0  328133  328141  328147  328151  328157  328159  328163  328169  328171  328177  328183  328187  328189  328193  328199  328201  328207  328211  328213  328217  328219  328223  328225  328227  328228  328229  328231  328232  328233  328235  328237  328241  328243  328247  328249  328253  328259  328261  328267  328271  328273  328277  328283  328289  328291  328297  328301  328303  328309  328313  328319  328327  447090 

1、;2、C;3、;4、D

[例题探究] 

例1.(1) (2)有理项分别为:

[教学建议] 要让学生来分析、解决问题,掌握用二项展开式的通项来处理问题,在教学中,要提醒学生二项式系数与某项系数的区别。

例2.15.[教学建议]让学生来分析展开式中每一项的由来,进而分析出常数项的由来。

例3.(1);(2);(3)

[教学建议]让学生来计算、归纳、总结,利用等比数列基本量的关系,熟悉二项式定理,将所求问题凑成二项式定理的形式。

(备用题)方法一、

 

所以递增

的最大值为7。

方法二、利用倒序相加法求,以下同上。

[教学建议]:本题的教学,首先要求学生找出通项,化简通项,找出规律,利用二项式系数性质求和或观察机构特点利用调头相加求和;充分利用单调性解不等式。

冲刺强化训练(25)

试题详情

8.设是定义在上的函数,且

 

(1)若,求

(2)若

第25讲 二项式定理的应用

[考前热身]

试题详情

7.若某一等差数列的首项为,公差为展开式的常数项,其中除以19的余数,则此数列前多少项的和最大?并求出这个最大值。

试题详情

6.若是一个等差数列,公差为,试求的值。

试题详情

5.关于二项式有下列四个命题,其中正确的序号是      

 (1)该二项展开式中非常数项的系数和是1;

(2)该二项展开式系数最大的项是第1004项;

(3)该二项展开式中第六项为

(4)当时,除以7的余数是4。

试题详情

4.(1)设   

  (2)设,则

          

试题详情

3.=   

试题详情

2、的展开式中,含x的正整数次幂的项共有(   )

   A.4项       B.3项       C.2项       D.1项

试题详情

1.的展开式中项的系数是(   )

   A.840       B.-840      C.210       D.-210

试题详情

2、二项式定理的应用不仅要注重它的“正用”,而且重视它的“逆用”比如例3 及备选题。

冲刺强化训练(24)

班级_____ 姓名_____ 学号_____      日期__月__日

试题详情


同步练习册答案