0  391056  391064  391070  391074  391080  391082  391086  391092  391094  391100  391106  391110  391112  391116  391122  391124  391130  391134  391136  391140  391142  391146  391148  391150  391151  391152  391154  391155  391156  391158  391160  391164  391166  391170  391172  391176  391182  391184  391190  391194  391196  391200  391206  391212  391214  391220  391224  391226  391232  391236  391242  391250  447090 

1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为_________________.

试题详情

22.解:(Ⅰ)直角梯形ABCD的面积是

 M底面

∴ 四棱锥S-ABCD的体积是

 M底面. 

(Ⅱ)延长BACD相交于点E,连结SE,则SE是所求二面角的棱.

ADBCBC = 2AD

EA = AB = SA,∴ SESB

SA⊥面ABCD,得面SEB⊥面EBCEB是交线,

BCEB,∴ BC⊥面SEB,故SBCS在面SEB上的射影,∴ CSSE

所以∠BSC是所求二面角的平面角.

BC =1,BCSB

∴ tg∠BSC

即所求二面角的正切值为. 

试题详情

21、解:(1)是圆的直径,∴,  又

.

(2)在中,.

   ∴

,即,而

底面

故三棱锥的体积为

.

试题详情

20.解:(1)已知EFAB,那么翻折后,显然有PEEF,又PEAE,从而PE面ABC,即PE为四棱锥的高。

四棱锥的底面积 而△BEF与△BDC相似,那么

= ,  =

=63=9

故四棱锥的体积V(x)=Sh=9 =  (0<x<3)

(2) V’(x)= 3-x2(0<x<3),  令V’(x)=0得x=6

当x∈(0,6)时,V’(x)>0,V(x)单调递增;x∈(6,3)时V’(x)><0,V(x)单调递减;

因此x=6时, V(x)取得最大值V(x)max= V(6)=12

(3)过F作AC的平行线交AE于点G,连结FG、PG,则EG=6,EF=,GF=PF=,PG=

试题详情

19.解:(Ⅰ)如图------ 3分

(Ⅱ)所求多面体体积

.------------------------7分

(Ⅲ)证明:在长方体中,

连结,则

因为分别为中点,

所以

从而.又平面

所以.--------------------12分

试题详情

10.  11. 3π  12. ③④  13.  14. 24  15. 16. 30O  17.10  18.,

试题详情

1. 6  2.  3. 12π  4.  5. 12  6.  7.  8.  9.

试题详情

16.空间几何体试题

试题详情

22.如图,在底面是直角梯形的四棱锥S-ABCD中,面ABCD,SA=AB=BC=1,AD=

(Ⅰ)求四棱锥S-ABCD的体积;

(Ⅱ)求面SCD与面SBA所成的二面角的正切值.

试题详情

21.如图5 所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径, ∠ABD=60o,∠BDC=45o.△ADP∽△BAD.

(1)求线段PD的长;  (2)若,求三棱锥P-ABC的体积.

试题详情


同步练习册答案