4、[解析]:由
>b且c>d![]()
>b+d,而由
>b+d
>b且c>d,可举反例。选A
3、[解析]由
得
,选B
2、[解析]集合
,∴
选D
1-10. BDBAB CACAD
1、[解析]
,∴
,选B。
(16)(本小题满分12分)
在△ABC中,sin(C-A)=1,sinB=
.
(Ⅰ)求sinA的值;
(Ⅱ)设AC=,求△ABC的面积.
(17)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区,B肯定是受A感染的。对于C,因为难以判定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是1/2.同样也假设D受A、B和C感染的概率都是1/3.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)。
(18)(本小题满分13分)
如图,四棱椎F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(Ⅰ) 求二面角B-AF-D的大小;
(Ⅱ) 求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积。
第(18)题图
(19)(本小题满分12分)
已知函数
(20)(本小题满分13分)
点P(x0,y0)在椭圆
1(a>b>0)上,x0=
, y0=
. 直线
与直线
:
垂直,O为坐标原点,直线OP的倾斜角为
,直线
的倾斜角为
.
(Ⅰ)证明:点P是椭圆
与直线
的唯一交点;
(Ⅱ)证明:tan
,tan
,tan
构成等比数列。
(21)(本小题满分13分)
首项为正数的数列{
}满足
.
(Ⅰ)证明:若
为奇数,则对一切
,
都是奇数;
(Ⅱ)若对一切
,都有
,求
的取值范围。
W数学(理科)试题 第4页(共4页)
2009年普通高等学校招生全国统一考试(安徽卷)
数学(理科)
(11)若随机变量X~N(μ,σ2),则P(X≤μ)= .
(12)以直角坐标系的原点为极点,x轴的正半轴为极轴,
并在两种坐标系中取相同的长度单位,已知直线的
极坐标方程为
,它与曲线
![]()
![]()
(α为参数)相交于两点A和B,则
![]()
|AB|= .
(13)程序框图(即算法流程图)如图所示,其输出结果是
.
(14)给定两个长度为1的平面向量
和
,它们的夹
角为120°.如图所示,点C在以O为圆心的圆弧![]()
上变动.若
,其中
,则x+y
的最大值是 .
(15)对于四面体ABCD,下列命题正确的是
(写出所有正确命题的编号).
①相对棱AB与CD所在的直线异面;
②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在的直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.
(1)i是虚数单位,若
(a、b∈R),则乘积ab的值是
(A)-15 (B)-3 (C)3 (D)15
(2)若集合A={x|︱2x-1︱<3},B={x|
<0},则A∩B是
(A){x|-1<x<
或2<x<3}
(B){x|2<x<3}
(C){x|
<x<2}
(D){x|-1<x<
}
(3)下列曲线中离心率为
的是
(A)
(B)![]()
(C)
(D)![]()
![]()
(4)下列选项中,
是
的必要不充分条件的是
(A)
, ![]()
(B)
, ![]()
的图像不过第二象限
(C)
,
![]()
(D)
,
在
上为增函数
(5)已知
为等差数列,
,
。以
表示
的前n项和,则使得
达到最大值的n是
(A)21 (B)20 (C)19 (D)18
(6)设
,函数
的图像可能是
![]()
![]()
(7)若不等式组
所表示的平面区域被直线
分为面积相等的两
![]()
部分,则k的值是
(A)
(B)
(C)
(D)![]()
(8)已知函数
,
的图像与直线
的两个相邻交点的距离等于
,则
的单调递增区间是
(A)
(B)![]()
(C)
(D)![]()
(9)已知函数
在R上满足
,则曲线
在点
处的切线方程是
(A)![]()
(B)
(C)
(D)![]()
(10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于
(A)
(B)
(C)
(D)![]()
(在此卷上答题无效)
2009年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
第Ⅱ卷(非选择题 共100分)
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.
22. (本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
与数列
的通项公式;
(II)设数列
的前
项和为
,是否存在正整数
,使得
成立?若存在,找出一个正整数
;若不存在,请说明理由;
(III)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
[解析](I)当
时,
又![]()
![]()
∴数列
是首项为
,公比为
的等比数列,
∴
,
…………………………………3分
(II)不存在正整数
,使得
成立。
证明:由(I)知
![]()
∴当n为偶数时,设
∴![]()
当n为奇数时,设![]()
∴![]()
∴对于一切的正整数n,都有
∴不存在正整数
,使得
成立。 …………………………………8分
(III)由
得
又
,
当
时,
,
当
时,
…………………………………14分
21. (本小题满分12分)
已知椭圆
的左、右焦点分别为
,离心率
,右准线方程为
。
(I)求椭圆的标准方程;
(II)过点
的直线
与该椭圆交于
两点,且
,求直线
的方程。
[解析](I)由已知得
,解得
∴ ![]()
∴ 所求椭圆的方程为
…………………………………4分
(II)由(I)得
、![]()
①若直线
的斜率不存在,则直线
的方程为
,由
得![]()
设
、
,
∴
,这与已知相矛盾。
②若直线
的斜率存在,设直线直线
的斜率为
,则直线
的方程为
,
设
、
,
联立
,消元得![]()
∴
,
∴
,
又∵![]()
∴ ![]()
∴ ![]()
化简得![]()
解得![]()
∴ ![]()
∴ 所求直线
的方程为
…………………………………12分
18. (本小题满分12分)
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中
是省外游客,其余是省内游客。在省外游客中有
持金卡,在省内游客中有
持银卡。
(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;
(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.
[解析]I)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.
设事件A为“采访该团2人,恰有1人持银卡”,则
所以采访该团2人,恰有1人持银卡的概率是
. …………………………………6分
(II)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为:
事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则
![]()
所以采访该团2人,持金卡与持银卡人数相等的概率是
. ……………………12分
19(本小题满分12分)
如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,![]()
(I)求证:
;
(II)设线段
、
的中点分别为
、
,求证:
∥![]()
(III)求二面角
的大小。
[解析]解法一:
因为平面ABEF⊥平面ABCD,BC
平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC
平面ABCD, BE
平面BCE,
BC∩BE=B
所以![]()
…………………………………………6分
(II)取BE的中点N,连结CN,MN,则MN![]()
![]()
PC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面BCE. …………………………………………8分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=
,则![]()
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+
=
,
,
在Rt⊿FGH中,
,
∴
二面角
的大小为![]()
…………………………………………12分
解法二: 因
等腰直角三角形,
,所以![]()
又因为平面
,所以
⊥平面
,所以![]()
即
两两垂直;如图建立空间直角坐标系,
(I) 设
,则
,![]()
∵
,∴
,
从而
,![]()
于是
,![]()
∴![]()
⊥
,
⊥![]()
∵![]()
平面
,![]()
平面
,![]()
∴![]()
(II)
,从而![]()
于是![]()
∴
⊥
,又
⊥平面
,直线
不在平面
内,
故
∥平面![]()
(III)设平面
的一个法向量为
,并设
=(![]()
![]()
即![]()
取
,则
,
,从而
=(1,1,3)
取平面
D的一个法向量为![]()
故二面角
的大小为![]()
20(本小题满分12分)
已知函数
的图象在与
轴交点处的切线方程是
。
(I)求函数
的解析式;
(II)设函数
,若
的极值存在,求实数
的取值范围以及函数
取得极值时对应的自变量
的值.
[解析](I)由已知,切点为(2,0),故有
,即
……①
又
,由已知
得
……②
联立①②,解得
.
所以函数的解析式为
…………………………………4分
(II)因为![]()
令![]()
当函数有极值时,则
,方程
有实数解,
由
,得
.
①当
时,
有实数
,在
左右两侧均有
,故函数
无极值
②当
时,
有两个实数根![]()
情况如下表:
|
|
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
↗ |
极大值 |
↘ |
极小值 |
↗ |
所以在
时,函数
有极值;
当
时,
有极大值;当
时,
有极小值;
…………………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com