4.“毒奶粉”事件再次提醒我们要注意食品安全,下列有关食品加工方法安全的是
A.用工业盐(含NaNO2)来做食品添加剂
B.用塑料颗粒来制作珍珠奶茶中的“珍珠”
C.用工业酒精勾兑水来生产低成本白酒
D.用小苏打来作焙制糕点的发酵粉成分
3.“神七”太空舱利用NiFe2O4做催化剂将宇航员呼出的CO2转化为O2,已知Fe 的化合价为+3,则Ni 的化合价为
A.+1 B.+2 C.+3 D.+4
2.下列物质与水混合充分搅拌后能导电的是
A.氢氧化铜 B.酒精 C.食盐 D.氯化银
1.下列在厨房中发生的变化是物理变化的是
A.榨取果汁 B.冬瓜腐烂 C.铁锅生锈 D.煤气燃烧
29.问题解决
解:方法一:如图(1-1),连接
.
由题设,得四边形
和四边形
关于直线
对称.
∴
垂直平分
.∴
··········································· 1分
∵四边形
是正方形,∴![]()
∵
设
则![]()
![]()
在
中,
.
∴
解得
,即
················································ 3分
在
和在
中,
,
,
![]()
······································································· 5分
设
则
∴![]()
解得
即
················································································· 6分
∴
··································································································· 7分
方法二:同方法一,
········································································· 3分
如图(1-2),过点
做
交
于点
,连接![]()
∵
∴四边形
是平行四边形.
∴![]()
同理,四边形
也是平行四边形.∴![]()
∵![]()
![]()
在
与
中
∴
····························· 5分
∵
······························································ 6分
∴
································································································· 7分
类比归纳
(或
);
;
·········································································· 10分
联系拓广
···································································································· 12分
26.(1)解:由
得
点坐标为![]()
由
得
点坐标为![]()
∴
··················································································· (2分)
由
解得
∴
点的坐标为
···································· (3分)
∴
··························································· (4分)
(2)解:∵点
在
上且![]()
∴
点坐标为
······················································································ (5分)
又∵点
在
上且![]()
∴
点坐标为
······················································································ (6分)
∴
··········································································· (7分)
(3)解法一:
当
时,如图1,矩形
与
重叠部分为五边形
(
时,为四边形
).过
作
于
,则![]()
∴
即
∴![]()
![]()
∴![]()
即
··································································· (10分)
(2009年山西省太原市)29.(本小题满分12分)
问题解决
如图(1),将正方形纸片
折叠,使点
落在
边上一点
(不与点
,
重合),压平后得到折痕
.当
时,求
的值.
类比归纳
在图(1)中,若
则
的值等于 ;若
则
的值等于 ;若
(
为整数),则
的值等于 .(用含
的式子表示)
联系拓广
如图(2),将矩形纸片
折叠,使点
落在
边上一点
(不与点
重合),压平后得到折痕
设
则
的值等于 .(用含
的式子表示)
26.(2009年山西省)(本题14分)如图,已知直线
与直线
相交于点
分别交
轴于
两点.矩形
的顶点
分别在直线
上,顶点
都在
轴上,且点
与点
重合.
(1)求
的面积;
(2)求矩形
的边
与
的长;
(3)若矩形
从原点出发,沿
轴的反方向以每秒1个单位长度的速度平移,设
移动时间为
秒,矩形
与
重叠部分的面积为
,求
关
![]()
的函数关系式,并写出相应的
的取值范围.
23.(2009年河南省)(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值.
![]()
解.(1)点A的坐标为(4,8) …………………1分
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
8=16a+4b
得
0=64a+8b
解 得a=-
,b=4
∴抛物线的解析式为:y=-
x2+4x
…………………3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE=
=
,即
=![]()
∴PE=
AP=
t.PB=8-t.
∴点E的坐标为(4+
t,8-t).
∴点G的纵坐标为:-
(4+
t)2+4(4+
t)=-
t2+8. …………………5分
∴EG=-
t2+8-(8-t)
=-
t2+t.
∵-
<0,∴当t=4时,线段EG最长为2.
…………………7分
②共有三个时刻. …………………8分
t1=
, t2=
,t3=
.
…………………11分
26.
解:(1)1,
;
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴
.
由△AQF∽△ABC,
,
得
.∴
.
∴
,
即
.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得
,
即
. 解得
.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得
,
即
. 解得
.
(4)
或
.
[注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
,![]()
.
由
,得
,解得
.
方法二、由
,得
,进而可得
,得
,∴
.∴
.
②点P由A向C运动,DE经过点C,如图7.
,
]
26.(2009年河北省)(本小题满分12分)
如图16,在Rt△ABC中,∠C=90°,AC = 3,AB
= 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t = 2时,AP = ,点Q到AC的距离是 ;
(2)在点P从C向A运动的过程中,求△APQ的面积S与
t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成
为直角梯形?若能,求t的值.若不能,请说明理由;
(4)当DE经过点C 时,请直接写出t的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com