精英家教网 > 初中数学 > 题目详情

阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

【答案】(1)见解析 (2)见解析 (3)

【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;

(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.

详(1)证明:如图1中,

∵∠BAC=∠DAE,

∴∠DAB=∠EAC,

在△DAB和△EAC中,

∴△DAB≌△EAC,

∴BD=EC.

(2)证明:如图2中,延长DC到E,使得DB=DE.

∵DB=DE,∠BDC=60°,

∴△BDE是等边三角形,

∴∠BD=BE,∠DBE=∠ABC=60°,

∴∠ABD=∠CBE,

∵AB=BC,

∴△ABD≌△CBE,

∴AD=EC,

∴BD=DE=DC+CE=DC+AD.

∴AD+CD=BD.

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

由(1)可知△EAB≌△GAC,

∴∠1=∠2,BE=CG,

∵BD=DC,∠BDE=∠CDM,DE=DM,

∴△EDB≌△MDC,

∴EM=CM=CG,∠EBC=∠MCD,

∵∠EBC=∠ACF,

∴∠MCD=∠ACF,

∴∠FCM=∠ACB=∠ABC,

∴∠1=3=∠2,

∴∠FCG=∠ACB=∠MCF,

∵CF=CF,CG=CM,

∴△CFG≌△CFM,

∴FG=FM,

∵ED=DM,DF⊥EM,

∴FE=FM=FG,

∵AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=∠FAG=m°.

点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.

【题型】解答题
【结束】
25

抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

练习册系列答案
相关习题

科目:初中数学 来源:2018年河南省周口市沈丘县中考数学一模试 题型:解答题

如图,在中,经过点A,C且与边AE,CE分别交于点D,F,点B是弧AC上一点,且弧弧BC,连接AB,BC,CD.

求证:

填空:若AC为的直径,则

的形状为______时,四边形OCFD为菱形;

的形状为______时,四边形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年福建省漳州市七年级(下)联考数学试卷 题型:单选题

已知下列方程:①x﹣2=;②x=0;③=x﹣3;④x2﹣4=3x;⑤x﹣1;⑥x﹣y=6,其中一元一次方程有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源:北京市石景山区2018届九年级中考二模数学试卷 题型:填空题

某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为________________.

查看答案和解析>>

科目:初中数学 来源:北京市石景山区2018届九年级中考二模数学试卷 题型:单选题

下列是一组logo设计的图片,其中不是中心对称图形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:湖南省邵阳市双清区2018届九年级中考数学模拟试卷 题型:解答题

某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.

(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.

(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?

查看答案和解析>>

科目:初中数学 来源:湖南省邵阳市双清区2018届九年级中考数学模拟试卷 题型:填空题

若不等式组无解,则m的取值范围是_____.

查看答案和解析>>

科目:初中数学 来源:江苏省淮安市淮安区2016-2017学年八年级(下)第一次月考数学试卷 题型:解答题

在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.

(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.

(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?

查看答案和解析>>

科目:初中数学 来源:广东省梅州市2017-2018学年八年级下学期第二次质检数学试卷 题型:单选题

下列命题中,假命题是( )

A. 有两角和其中一角的对边对应相等的两个三角形全等

B. 有一边相等的两个等边三角形全等

C. 面积相等的两个三角形全等

D. 三边对应相等的两个三角形全等

查看答案和解析>>

同步练习册答案