精英家教网 > 初中数学 > 题目详情

如图⊙O′和⊙O″外切于点A,外公切线BC与⊙O′,⊙O″分别切于点B、C,与连心线O′O″交于P,若∠BPO′=30°,则⊙O′与⊙O″的半径的比为


  1. A.
    1:2
  2. B.
    1:3
  3. C.
    2:3
  4. D.
    3:4
B
分析:根据切线的性质定理得出O′B⊥PB,O″C⊥PC,再利用直角三角形中30°所对边等于斜边的一半,进而得出两圆半径的关系即可.
解答:解:连接BO′,CO″,
∵⊙O′和⊙O″外切于点A,外公切线BC与⊙O′,⊙O″分别切于点B、C,
∴O′B⊥PB,O″C⊥PC,
设⊙O′半径为x,⊙O″半径为y,
∵∠BPO′=30°,
∴PO′=2x,PO″=2y,
∴PA=3x=y,
∴⊙O′与⊙O″的半径的比为:1:3.
故选:B.
点评:此题主要考查了相切两圆的性质以及直角三角形中30°所对边等于斜边的一半等知识,根据已知得出PA=AO″是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC精英家教网、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,P精英家教网D切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.
(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果PC=PD,求PB的长;
(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(10)(解析版) 题型:解答题

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《一元二次方程》(06)(解析版) 题型:解答题

(2003•舟山)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.
(1)若PC=PD,求PB的长.
(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.
(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.

查看答案和解析>>

同步练习册答案