精英家教网 > 初中数学 > 题目详情
15.如图,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.

分析 (1)首先把点B的坐标为(3,0)代入抛物线y=-x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.

解答 解:(1)把点B的坐标为(3,0)代入抛物线y=-x2+mx+3得:0=-32+3m+3,
解得:m=2,
∴y=-x2+2x+3=-(x-1)2+4,
∴顶点坐标为:(1,4).

(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴$\left\{\begin{array}{l}{0=3k+b}\\{3=b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$,
∴直线BC的解析式为:y=-x+3,
当x=1时,y=-1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).

点评 此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.关于x的不等式组$\left\{\begin{array}{l}{-x<1}\\{x-2≤0}\end{array}\right.$,其解集在数轴上表示正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为(  )
A.0.845×1010B.84.5×108C.8.45×109D.8.45×1010

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为(  )
A.4S1B.4S2C.4S2+S3D.3S1+4S3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是(  )
A.∠EMB=∠ENDB.∠BMN=∠MNCC.∠CNH=∠BPGD.∠DNG=∠AME

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是(  )
A.y=-(x-$\frac{5}{2}$)2-$\frac{11}{4}$B.y=-(x+$\frac{5}{2}$)2-$\frac{11}{4}$C.y=-(x-$\frac{5}{2}$)2-$\frac{1}{4}$D.y=-(x+$\frac{5}{2}$)2+$\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=$\frac{1}{10}$x2-$\frac{4}{5}$x+3的绳子.

(1)求绳子最低点离地面的距离;
(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;
(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为$\frac{1}{4}$,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,圆O通过五边形OABCD的四个顶点.若$\widehat{ABD}$=150°,∠A=65°,∠D=60°,则$\widehat{BC}$的度数为何?(  )
A.25B.40C.50D.55

查看答案和解析>>

同步练习册答案