如图,已知抛物线y=x
-ax+a
-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
![]()
(1)求a的值;(2)当四边形ODPQ为矩形时,求这个矩形的面积;(3)当四边形PQBC的面积等于14时,求t的值.(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)
(1)8(2)(3)(4) 【解析】【解析】 (1)∵抛物线y=x-ax+a-4a-4经过点(0,8) ∴a-4a-4=8 解得:a=6,a=-2(不合题意,舍去) ∴a的值为6 (2)由(1)可得抛物线的解析式为 y=x-6x+8 当y=0时,x-6x+8=0 解得:x=2,x=4 ∴A点坐标为(2,0),B点坐标为(4,0) 当y=...科目:初中数学 来源:青海省2017-2018学年七年级上学期12月月考数学试卷 题型:解答题
计算 ![]()
查看答案和解析>>
科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:单选题
一元二次方程(x+1)2+2016=0的根的情况是( )
A. 有两个相等的实数根 B. 有两个不相等的实数根
C. 只有一个实数根 D. 无实数根
D 【解析】一元二次方程(x+1)2+2016=0即为x2+2x+2017=0, ∵△=4?4×1×2017<0, ∴原方程无实数根. 故选:D.查看答案和解析>>
科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:填空题
如果一个角是它的余角的一半,那么这个角是_______
30° 【解析】试题分析:设这个角的度数为x°,根据题意可得:x=,解得:x=30°.查看答案和解析>>
科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:单选题
小华的存款x元,小林的存款比小华的一半还多2元,小林的存款是( )
A.
B.
) C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:2017年贵州省中考数学二模试卷 题型:解答题
如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线于点F.
试问:(1)图中△APD与哪个三角形全等?并说明理由.
(2)求证:PA2=PE•PF.
![]()
查看答案和解析>>
科目:初中数学 来源:2017年贵州省中考数学二模试卷 题型:填空题
分解因式:x2+4+4x﹣y2=_____.
(x+y+2)(x﹣y+2) 【解析】试题解析:原式 故答案为:查看答案和解析>>
科目:初中数学 来源:黄金30题系列 九年级数学 大题易丢分 题型:解答题
如图,在平面直角坐标系中,已知抛物线C1:y=
的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.
(1)结合图象,直接写出不等式
x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,
求3﹣4q的最大值.
![]()
【答案】(1)﹣2<x<0(2)y=﹣
x2+6x﹣2(3)当q=
时,3﹣4q取最大值,最大值为﹣7
【解析】试题分析:(1)、首先根据二次函数的解析式分别求出点M和点N的坐标,然后根据图像得出不等式的取值范围;(2)、根据翻折得出抛物线的顶点坐标和开口方向以及大小,从而得出抛物线的函数解析式;(3)、首先将点M和点N的坐标代入一次函数解析式得出一次函数的解析式,然后设平移后的解析式为y=3x+2-q,然后根据与抛物线有交点得出方程有实数根,从而得出最大值.
试题解析:(1)令y=
中x=0,则y=2,
∴N(0,2); ∵y=
=
(x+2)2﹣4, ∴M(﹣2,﹣4).
观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,
∴不等式
x2+6x+2<kx+b的解集为﹣2<x<0.
(2)∵抛物线C1:y=
的顶点为M(﹣2,﹣4),
沿x轴翻折后的对称点坐标为(﹣2,4). ∵抛物线C2的顶点与点M关于原点对称,
∴抛物线C2的顶点坐标为(2,4), ∴p=2﹣(﹣2)=4.
∵抛物线C2与C1开口大小相同,开口方向相反,
∴抛物线C2的解析式为y=﹣
(x﹣2)2+4=﹣
x2+6x﹣2.
(3)将M(﹣2,﹣4)、N(0,2)代入y=kx+b中,得:
,解得:
,
∴直线l的解析式为y=3x+2.
∵若直线l沿y轴向下平移q个单位长度后与抛物线C2存在公共点,
∴方程﹣
x2+6x﹣2=3x+2﹣q有实数根,即3x2﹣6x+8﹣2q有实数根,
∴△=(﹣6)2﹣4×3×(8﹣2q)≥0,解得:q≥
. ∵﹣4<0,
∴当q=
时,3﹣4q取最大值,最大值为﹣7.
点睛:本题主要考查的就是二次函数的图形与性质、一次函数的性质、二次函数与一次函数的大小比较的方法以及函数与方程之间的关系,属于中上难度的题目.在解答函数大小比较的题目时,我们首先根据方程的思想得出两个函数的交点坐标,然后过交点作x轴的垂线,然后根据函数所处的位置进行比较大小得出答案;函数关于x轴对称,则顶点坐标的纵坐标变为相反数,开口方向发生改变,开口大小不改变;在求直线与抛物线是否有交点时,则联立成方程,然后根据一元二次方程根的判别式来进行判定.
【题型】解答题
【结束】
17
某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:
![]()
设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)
(1)请根据上表,求出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?
(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?
(1); (2),当时, ; (3)当销售单价为元时,在全部收回投资的基础上使第二个月的利润不低于1700元. 【解析】【试题分析】(1)根据表格的数据.易得销售单价每升高5元,销售量下降10Kg,即w是x的一次函数,故设设,将(70,100),(75,90)代入上式得: 解得: ,则; (2)销售利润=单位质量的利润乘以销售量,即 ,化为顶点式得, ,当时, ...查看答案和解析>>
科目:初中数学 来源:黄金30题系列 七年级数学 小题易丢分 题型:单选题
若方程
是关于x的一元一次方程,则代数式|m﹣1|的值为()
A. 0 B. 2 C. 0或2 D. ﹣2
A 【解析】根据一元一次方程的定义,得m2-1=0,且-m-1≠0, 即m2=1,且m≠-1, 得m=1, 则|m﹣1|=|1﹣1|=0. 故选A.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com