精英家教网 > 初中数学 > 题目详情

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.若∠BAC=30°,EF⊥AB,垂足为F,连结DF.
求证:(1)△ABC≌△EAF;
(2)四边形ADFE是平行四边形.

证明:(1)∵△ABE为等边三角形,EF⊥AB,
∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,
∴∠FEA=30°,又∠BAC=30°,
∴∠FEA=∠BAC,
在△ABC和△EAF中,

∴△ABC≌△EAF(AAS);
(2)∵∠BAC=30°,∠DAC=60°,
∴∠DAB=90°,即DA⊥AB,
∵EF⊥AB,
∴AD∥EF,
∵△ABC≌△EAF,
∴EF=AC=AD,
∴四边形ADFE是平行四边形.
分析:(1)由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证;
(2)由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF垂直于AB,得到EF与AD平行,再由(1)的全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.
点评:此题考查了平行四边形的判定,平行线的判定与性质,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,分别以Rt△ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3
(1)如图②,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,写出它们的关系;(不必证明)
(2)如图③,分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明;
(3)若分别以Rt△ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,连接DF、EF、DE,EF与AC交于点O,DE与AB交于点G,连接OG,若∠BAC=30°,下列结论:
①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG与△EOG的面积比为1:4.
其中正确结论的序号是(  )
A、①②③B、①④⑤C、①③⑤D、①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB中点,连接DF、EF,DE、EF与AC交于点O,DE与AB交于点G,连接OG,若∠BAC=30°,下列结论:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG与△EOG的面积比为1:4.其中正确的结论的序号是
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以Rt△ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,容易得出S1、S2、S3之间有的关系式
S1=S2+S3
S1=S2+S3

查看答案和解析>>

同步练习册答案