若二次函数y=-x2-4x+k的最大值是9,则k=______.
5 【解析】y=?(x?2)2+4+k, ∵二次函数y=?x2?4x+k的最大值是9, ∴4+k=9,解得:k=5, 故答案为:5.科目:初中数学 来源:2018年春人教版八年级数学下册(广西)期中测试 题型:填空题
如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=
BD
其中正确结论的为______(请将所有正确的序号都填上).
![]()
查看答案和解析>>
科目:初中数学 来源:青海省2017-2018学年七年级上学期12月月考数学试卷 题型:填空题
若2a﹣b=3,则多项式8a﹣4b+3的值是______.
15 【解析】试题解析: 故答案为:查看答案和解析>>
科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:解答题
如图,点A、B、C、D、E在圆上,弦的延长线与弦的延长线相交于点,AB是圆的直径,D是BC的中点.求证:AB=AC.
![]()
查看答案和解析>>
科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:填空题
二次函数y=ax2+bx+c(a≠0)的图象如图,对称轴是直线x=1,有以下四个结论:
①abc>0;②b2-4ac>0;③b=-2a;④a+b+c>2.其中正确的是______(填写序号)
![]()
查看答案和解析>>
科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:单选题
将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )
A. y=(x+1)2-13 B. y=(x-5)2-3 C. y=(x-5)2-13 D. y=(x+1)2-3
A 【解析】先将一般式化为顶点式,根据左加右减,上加下减来平移 【解析】 将抛物线化为顶点式为: ,左平移3个单位,再向上平移5个单位 得到抛物线的表达式为 故选A. “点睛”本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考...查看答案和解析>>
科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:解答题
如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.
①用含x的代数式表示∠EOF;
②求∠AOC的度数.
![]()
查看答案和解析>>
科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:填空题
若单项式
与单项式﹣5xmy3是同类项,则m﹣n的值为________.
查看答案和解析>>
科目:初中数学 来源:黄金30题系列 九年级数学 大题易丢分 题型:解答题
如图,在
中,
,点
到
两边的距离相等,且
.
(1)先用尺规作出符合要求的点
(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;
(2)设
,
,试用
、
的代数式表示
的周长和面积;
(3)设
与
交于点
,试探索当边
、
的长度变化时,
的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.
![]()
【答案】(1)作图见解析;ΔABP是等腰直角三角形. 理由见解析;(2)
;
(3)
.
【解析】
(1)依题意,点P既在
的平分线上,
又在线段AB的垂直平分线上.
如图1,作
的平分线
,
作线段
的垂直平分线
,
与
的
交点即为所求的P点。┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分
是等腰直角三角形.
理由:过点P分别作
、
,垂足为E、F如图2.
∵
平分
,
、
,垂足为E、F,
∴
.
又∵
,∴
≌
.┄┄┄┄┄┄┄┄4分
∴
.
∵
,
,
,
∴
, 从而
.
又
∴
是等腰直角三角形. ┄┄┄┄┄┄┄┄5分
(2)如图2,在
中,
,
,
. ∴
.
由
≌
,
≌
,
可得
,
.
∴
.
在
中,
,
,
,
∴
. ∴
. ┄┄┄┄6分
所以
的周长为:
. ┄┄┄┄7分
因为
的面积=
的面积![]()
的面积
的面积
=
=![]()
=
(
)┄┄9分
或
.
(3)过点
分别作
、
,垂足为
、
如图3.
∵
.┄┄┄┄10分
由
∥
得
①┄┄┄┄┄┄┄┄11分
由
∥
得
② ┄┄┄┄┄┄12分
①+②,得
,即
.
∴
, 即
┄┄┄┄13分
【点睛】(1)由题意作出∠ACB的角平分线和线段AB的垂直平分线可求出点P,然后证明Rt△APE≌Rt△BPF即可;
(2)由PA=PB,PA=m,可得出
,由Rt△APE≌Rt△BPF,△PCE≌△PCF,可得CA+CB=CE+EA+CB=CE+CF=2CE,在Rt△PCE中, PC=n,可知
,即
,最后求出周长和面积;
(3)由平行线分线段成比例定理得到
,
是解答本题的关键.
【题型】解答题
【结束】
15
⊙O是△ABC的外接圆,AB是直径,过
的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.
(1)如图1,求证:AG=CP;
(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;
(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2
,求AC的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com