精英家教网 > 初中数学 > 题目详情

若二次函数y=-x2-4x+k的最大值是9,则k=______.

5 【解析】y=?(x?2)2+4+k, ∵二次函数y=?x2?4x+k的最大值是9, ∴4+k=9,解得:k=5, 故答案为:5.
练习册系列答案
相关习题

科目:初中数学 来源:2018年春人教版八年级数学下册(广西)期中测试 题型:填空题

如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:

①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD

其中正确结论的为______(请将所有正确的序号都填上).

①③④ 【解析】试题分析:根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案. 【解析】 ∵△ACE是等边三角形, ∴∠EAC=60°,AE=AC, ∵∠BAC=...

查看答案和解析>>

科目:初中数学 来源:青海省2017-2018学年七年级上学期12月月考数学试卷 题型:填空题

若2a﹣b=3,则多项式8a﹣4b+3的值是______.

15 【解析】试题解析: 故答案为:

查看答案和解析>>

科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:解答题

如图,点A、B、C、D、E在圆上,弦的延长线与弦的延长线相交于点,AB是圆的直径,D是BC的中点.求证:AB=AC.

证明过程见解析 【解析】 试题分析:连接AD.只要证明AD垂直平分线段BC即可解决问题. 试题解析:如图,连接AD. ∵AB为圆O的直径, ∴∠AOB=90°, ∵D为BC的中点, ∴AD垂直平分BC, ∴AB=AC.

查看答案和解析>>

科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:填空题

二次函数y=ax2+bx+c(a≠0)的图象如图,对称轴是直线x=1,有以下四个结论:

①abc>0;②b2-4ac>0;③b=-2a;④a+b+c>2.其中正确的是______(填写序号)

②③④ 【解析】①∵抛物线的开口向下,∴a<0, ∵与y轴的交点为在y轴的正半轴上,∴c>0, ∵对称轴为x=?>0,∴a、b异号,即b>0, ∴abc<0; 故本结论错误; ②从图象知,该函数与x轴有两个不同的交点,所以根的判别式△=b2?4ac>0; 故本结论正确; ③∵对称轴为x=?=1, ∴b=?2a, 故本结论正确; ④由...

查看答案和解析>>

科目:初中数学 来源:甘肃省定西市安定区2017-2018学年九年级上学期期末考试数学试卷 题型:单选题

将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )

A. y=(x+1)2-13 B. y=(x-5)2-3 C. y=(x-5)2-13 D. y=(x+1)2-3

A 【解析】先将一般式化为顶点式,根据左加右减,上加下减来平移 【解析】 将抛物线化为顶点式为: ,左平移3个单位,再向上平移5个单位 得到抛物线的表达式为 故选A. “点睛”本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考...

查看答案和解析>>

科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:解答题

如图,直线AB、CD相交于点O,OE平分∠BOD.

(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;

(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.

①用含x的代数式表示∠EOF;

②求∠AOC的度数.

(1)55°;(2)①∠FOE=x;②100°. 【解析】试题分析:(1)、根据对顶角的性质得出∠BOD的度数,根据直角和角平分线的性质求出∠BOF和∠BOE的度数,从而根据∠EOF=∠BOF+∠BOD得出答案;(2)、根据角平分线的性质得出∠BOE=∠DOE,根据平角的性质得出∠COE=∠AOE,最后根据角平分线的性质得出∠FOE的度数;根据题意得出∠BOE= -15°,根据∠BOE+∠A...

查看答案和解析>>

科目:初中数学 来源:江苏省东台市第三教育联盟2017-2018学年度第一学期第三次阶段检测七年级数学试卷 题型:填空题

若单项式与单项式﹣5xmy3是同类项,则m﹣n的值为________.

-2 【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=2,n-1=3,解得:m=2,n=4,则m-n=2-4=-2.

查看答案和解析>>

科目:初中数学 来源:黄金30题系列 九年级数学 大题易丢分 题型:解答题

如图,在中, ,点两边的距离相等,且

(1)先用尺规作出符合要求的点(保留作图痕迹,不需要写作法),然后判断△ABP的形状,并说明理由;

(2)设,试用的代数式表示的周长和面积;

(3)设交于点,试探索当边的长度变化时,的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.

【答案】(1)作图见解析;ΔABP是等腰直角三角形. 理由见解析;(2) (3).

【解析】(1)依题意,点P既在的平分线上,

又在线段AB的垂直平分线上.

如图1,作的平分线

作线段的垂直平分线

交点即为所求的P点。┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分

是等腰直角三角形.

理由:过点P分别作,垂足为E、F如图2.

平分,垂足为E、F,

.

又∵ ,∴ .┄┄┄┄┄┄┄┄4分

.

, 从而.

是等腰直角三角形. ┄┄┄┄┄┄┄┄5分

(2)如图2,在中,

. ∴.

可得.

.

中,

. ∴. ┄┄┄┄6分

所以的周长为:. ┄┄┄┄7分

因为的面积=的面积的面积的面积

==

=)┄┄9分

.

(3)过点分别作,垂足为如图3.

.┄┄┄┄10分

①┄┄┄┄┄┄┄┄11分

② ┄┄┄┄┄┄12分

①+②,得 ,即 .

, 即 ┄┄┄┄13分

【点睛】(1)由题意作出∠ACB的角平分线和线段AB的垂直平分线可求出点P,然后证明Rt△APE≌Rt△BPF即可;

(2)由PA=PB,PA=m,可得出 ,由Rt△APE≌Rt△BPF,△PCE≌△PCF,可得CA+CB=CE+EA+CB=CE+CF=2CE,在Rt△PCE中, PC=n,可知 ,即 ,最后求出周长和面积;

(3)由平行线分线段成比例定理得到 , 是解答本题的关键.

【题型】解答题
【结束】
15

⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.

(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2,求AC的长.

(1)证明见解析; (2)证明见解析; (3)AC=10 【解析】 试题分析:(1)利用等弧所对的圆周角相等即可求解; (2)利用等弧所对的圆周角相等,得到角相等∠APG=∠CAP,判断出△BOD≌△POH,再得到角相等,从而判断出线平行; (3)由三角形相似,得出比例式,△HON∽△CAM,,再判断出四边形CDHM是平行四边形,最后经过计算即可求解. 试...

查看答案和解析>>

同步练习册答案