精英家教网 > 初中数学 > 题目详情
3.在平行四边形ABCD中,三个顶点的坐标分别为A(-5,0),B(4,1),C(2,5),请求出第四个顶点D的坐标.

分析 利用平行四边形的对角线相交且被交点平分;通过对与哪一个点是对顶点分类讨论;利用中点坐标公式求出即可.

解答 解:设第四个顶点为(x,y),
当第四个顶点与A(-2,0)对顶点则,
x-5=6;y=6,
解得x=11,y=6,
当第四个顶点与C(2,5)为对顶点则,
x+2=-1,y+5=1,
解得x=-3,y=-4,
当第四个顶点与B(4,1)为对顶点则,
x+4=-3;y+1=5,
解得x=-7,y=4,
综上所述:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(-3,-4),(-7,4),(11,6)

点评 此题考查了平行四边形的性质,坐标与图形性质,熟练掌握平行四边形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)一共调查了多少名学生;
(2)请补全条形统计图;
(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.
(1)求证:四边形ABCF是矩形;
(2)若ED=EC,求证:EA=EG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)(π-5)0+$\sqrt{25}+2×(-3)+{2^{-2}}$
(2)(a+b)2+2a(a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=$\frac{3}{4}$,CD=24,求⊙O的半径;
(3)请问$\frac{{G{F^2}-G{B^2}}}{{\sqrt{2}DF•GF}}$的值为定值吗?如是,请写出计算过程,若不是请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系为y=0.4x;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
求出yB与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,以△ABC的边AB为直径作⊙O,与BC交于点D,点E是弧BD的中点,连接AE交BC于点F,∠ACB=2∠BAE.
(1)求证:AC是⊙O的切线;
(2)若sinB=$\frac{2}{3}$,BD=5,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.对于任意的正数m、n定义运算※为:m※n=$\left\{\begin{array}{l}{\sqrt{m}-\sqrt{n}(m>n)}\\{\sqrt{m}+\sqrt{n}(m<n)}\end{array}\right.$,计算(3※2)×(8※12)的结果为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知长方形纸片ABCD.
(1)如图①,点E在BC边上,连接AE将∠BAE对折,点B落在AE上的点B′处,使折痕AF;将∠DAE对折,点D落在AE上的D′处,得折痕AG,求∠FAG的度数;
(2)如图②,点E、K分别在BC、CD边上,连接AE、AK.将∠BAE对折,点B落在AE上的B′处,得折痕AF;将∠DAK对折,点D落在AK上的D′处,得折痕AG.设∠FAG=α,∠EAK=β,请写出α、β满足的数量关系式,并说明理由.

查看答案和解析>>

同步练习册答案