解:(1)原式=(x
2-y
2)
2-(x
2-y
2)(x
2+y
2),
=(x
2-y
2)(x
2-y
2-x
2-y
2),
=-2x
2y
2+2y
4;
(2)原式=(2x-4+1)(x-2)-2(x-1)
2,
=2(x-2)
2-2(x-1)
2+x-2,
=2(x-2+x-1)(x-2-x+1)+x-2,
=2(2x-3)(-1)+x-2,
=-3x+4;
(3)原式=[(

x-y)
2+2(

x-y)(

x+y)+(

x+y)
2-2(

x-y)(

x+y)](

x
2-2y
2),
=(

x
2+2y
2)(

x
2-2y
2),
=

x
4+4y
4;
(4)原式=(a+1)(a+4)(a+2)(a+3);
=(a
2+5a+4)(a
2+5a+6),
=(a
2+5a)
2+10(a
2+5a)+24,
=a
4+10a
3+35a
2+50a+24.
分析:(1)本题可用平方差公式进行化简;
(2)(2x-3)可写成2(x-2)+1,然后根据提取公因式法和平方差公式进行化简;
(3)可先将大括号内的式子配成完全平方公式,然后再化简;
(4)第一项与第四项相乘,二与三相乘,再用分配律和乘法公式计算.
点评:本题考查整式的综合运算能力,要注意对各公式的熟练应用.