分析 先由AB=BD,BC=BD,根据等边对等角得出∠BAD=∠BDA,∠BCD=∠BDC,于是∠ADC=∠BDA+∠BDC=∠BAD+∠BCD,由四边形内角和为360°得到∠BAD+∠BCD+∠ADC+∠ABC=2∠ADC+∠ABC=360°,又AB=BC=AC,根据等边三角形的性质得出∠ABC=60°,所以∠ADC=150°.
解答 解:∵AB=BD,BC=BD,
∴∠BAD=∠BDA,∠BCD=∠BDC,
∴∠ADC=∠BDA+∠BDC=∠BAD+∠BCD,
∴∠BAD+∠BCD+∠ADC+∠ABC=2∠ADC+∠ABC=360°,
又∵AB=BC=AC,
∴∠ABC=60°,
∴∠ADC=150°.
点评 本题考查了等腰三角形的性质,四边形内角和定理,等边三角形的性质,难度适中.根据条件得出2∠ADC+∠ABC=360°是解题的关键.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com