精英家教网 > 初中数学 > 题目详情
4.如图,AC是⊙O的直径,PA切⊙O于点A,点B在⊙O上,PA=PB,PB的延长线与AC的延长线交于点M.
(1)求证;PB是⊙O的切线;
(2)当AC=6,PA=8时,求MB的长.

分析 (1)由△POA≌△POB,得∠PBO=∠PAO即可证明.
(2)设BM=x,OM=y,由△MOB∽△MPA,得$\frac{OB}{AB}$=$\frac{BM}{MA}$=$\frac{OM}{PM}$,列出方程组即可解决问题.

解答 (1)证明:连接PO,
∵PA是⊙O切线,
∴OA⊥PA,
∴∠OAP=90°,
在△POA和△POB中,
$\left\{\begin{array}{l}{PA=PB}\\{PO=PO}\\{OA=OB}\end{array}\right.$,
∴△POA≌△POB,
∴∠PBO=∠PAO=90°,
∴OB⊥PB,
∴PB是⊙O切线.
(2)解:设BM=x,OM=y,
∵∠M=∠M,∠OBM=∠MAP=90°,
∴△MOB∽△MPA,
∴$\frac{OB}{AB}$=$\frac{BM}{MA}$=$\frac{OM}{PM}$,
∴$\frac{3}{8}$=$\frac{x}{y+3}$=$\frac{y}{x+8}$,解得x=$\frac{144}{55}$,y=$\frac{219}{55}$,
∴BM=$\frac{144}{55}$.

点评 本题考查切线的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握切线的判定方法,学会把问题转化为方程解决,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AD的长为4$\sqrt{3}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)边AC的长等于5.
(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A′B′C,使点B的对应点B′恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明画图方法(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:∠AOB=90°,OA=OB=4,P、M、N分别是OB、OA、$\widehat{AB}$上的动点,且∠MPN=90°,PM:PN=3:2,求△PMN周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,反比例函数y1=$\frac{k}{x}$的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(-3,m).
(1)求反比例函数y1=$\frac{k}{x}$和一次函数y2=ax+b的表达式;
(2)点C 是坐标平面内一点,BC∥x 轴,AD⊥BC 交直线BC 于点D,连接AC.若AC=$\sqrt{5}$CD,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:(-$\frac{1}{2}$)-1-3tan30°+(1-$\sqrt{2}$)0+$\sqrt{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.坐标平面内有两点P(x,y),Q(m,n),若x+m=0,y-n=0,则点P与点Q(  )
A.关于x轴对称B.无对称关系C.关于原点对称D.关于y轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,矩形ABCD中,AB=12,BC=$4\sqrt{3}$,点O是AB的中点,点P在AB的延长线上,且BP=6.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧,设运动的时间为t秒(t≥0).
(1)当t=2时,等边△EFG的边FG恰好经过点C;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案