精英家教网 > 初中数学 > 题目详情
6.探究题:
(1)问题发现:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
填空:①∠AEB的度数为60°;直接写出结论,不用证明.
②线段AD、BE之间的数量关系是AD=BE.直接写出结论,不用证明.
(2)拓展探究:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
猜想:①∠AEB=90°;②AE=BE+2CM(CM、AE、BE的数量关系).
证明:①∠AEB=90°,②AE=BE+2CM
(3)解决问题:
如果,如图2,AD=x+y,CM=x-y,试求△ABE的面积(用x,y表示).

分析 (1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数;
(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE;
(3)由(2)知,BE=AD=x+y,AE=BE+2CM=x+y+2(x-y)=3x-y,根据三角形的面积公式即可得到结论.

解答 解:(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC-∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.

(2)猜想:①∠AEB=90°,②AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{CA=CB}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC-∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.
故答案为:90°,AE=BE+2CM;

(3)由(2)知,BE=AD=x+y,
AE=BE+2CM=x+y+2(x-y)=3x-y,
∴S△AEB=$\frac{1}{2}$AE•BE=$\frac{1}{2}$(x+y)(3x-y)=$\frac{3}{2}$x2+xy-$\frac{1}{2}$y2

点评 本题考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.$\frac{3}{4}$的倒数是(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:${(-\frac{1}{2})^{-2}}+\sqrt{9}×{(\sqrt{3}-\sqrt{2})^0}-{(-1)^{2015}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列图形中即是轴对称图形,又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在括号内填入适当的单项式,使等式成立:$\frac{1}{xy}$=$\frac{()}{2x{y}^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论:
①PD=DQ;②DE=$\frac{1}{2}$AC;③AE=$\frac{1}{2}$CQ;④PQ⊥AB
其中正确的有①②③.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,OA,OB,OC是圆的三条半径.
(1)若他们的圆心角度数比为1:2:3,求这三个扇形的圆心角的度数.
(2)在(1)的条件下,若圆的半径为2cm,求这三个扇形的面积.(保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.把下列不等式化成x>a或x<a的形式.
(1)2x+5>3;
(2)-6(x-1)<0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.-m-n+p的相反数是m+n-p.

查看答案和解析>>

同步练习册答案