精英家教网 > 初中数学 > 题目详情

如图1,在△ABC中,∠B=90°,∠C=30°,点D从C点出发沿着CA方向以2个单位每秒的速度向终点A运动,同时点E从点A出发沿AB方向以1个单位每秒的速度向终点B运动。设点D,E的运动时间为t秒,DF⊥BC于F

(1)求证:AE=DF;

(2)如图2,连接EF,

①是否存在t,使得四边形AEFD为菱形?若存在,求出t的值;若不存在,请说明理由

②连接DE,当△DEF是直角三角形时,求t的值

图1 图2 备用图 备用图

练习册系列答案
相关习题

科目:初中数学 来源:江苏省2018届九年级上学期第二次月考数学试卷 题型:解答题

如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tanB=.

(1)求AC和AB的长;

(2)求sin∠BAD的值.

查看答案和解析>>

科目:初中数学 来源:北京东城北京二中教育集团2018届九年级上学期期中考试数学试卷 题型:单选题

如图所示,在中,中点,点,则的面积比为( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:山东省聊城市2018年中考数学试卷 题型:单选题

春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

A. 经过集中喷洒药物,室内空气中的含药量最高达到

B. 室内空气中的含药量不低于的持续时间达到了

C. 当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效

D. 当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内

查看答案和解析>>

科目:初中数学 来源:山东省聊城市2018年中考数学试卷 题型:单选题

下列计算错误的是(  )

A. a2÷a0•a2=a4 B. a2÷(a0•a2)=1

C. (﹣1.5)8÷(﹣1.5)7=﹣1.5 D. ﹣1.58÷(﹣1.5)7=﹣1.5

查看答案和解析>>

科目:初中数学 来源:福建省福州市2017-2018年八年级上学期期末数学考前测试卷(一)(范围:八上+勾股+平行四边形) 题型:解答题

把下列各因式因式分解

(1); (2)

查看答案和解析>>

科目:初中数学 来源:福建省福州市2017-2018年八年级上学期期末数学考前测试卷(一)(范围:八上+勾股+平行四边形) 题型:填空题

平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

查看答案和解析>>

科目:初中数学 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?

大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.

请你在下列的阅读、应用的过程中,完成解答.

(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,

∵直线l是点B,B′的对称轴,点C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______.

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

归纳小结:

本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).

本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.

(2)模型应用

①如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.

解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______.

②如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______;

③如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目:初中数学 来源:2018年浙江省温州市六校联考数学试卷 题型:解答题

如图,抛物线交x轴于A,B两点(点A在点B的右侧),交y轴于点

C,顶点为D,对称轴分别交x轴、AC于点E、F,点P是射线DE上一动点,过点P作AC的平行线

MN交x轴于点H,交抛物线于点M,N(点M位于对称轴的左侧).设点P的纵坐标为t..

(1)求抛物线的对称轴及点A的坐标.

(2)当点P位于EF的中点时,求点M的坐标.

(3)① 点P在线段DE上运动时,当时,求t的值.

② 点Q是抛物线上一点,点P在整个运动过程中,满足以点C,P,M,Q为顶点的四边形是平行

四边形时,则此时t的值是 (请直接写出答案).

查看答案和解析>>

同步练习册答案