精英家教网 > 初中数学 > 题目详情

作业宝如图,△ABC三内角平分线交于点D,过点D引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.

证明:∵AO平分∠BAC,DE⊥AO,
∴∠DAO=∠EAO.
在△ADO和△AEO中,

∴△ADO≌△AEO(ASA),
∴∠ADO=∠AEO,
∴∠BDO=∠OEC=90°+∠BAC,
∴∠BOC=90°+∠BAC,
∴∠BDO=∠OEC=∠BOC,
∵O是△ABC的内角平分线的交点,
∴∠1=∠2,
∴△DBO∽△OBC,
同理可得出:△BOC∽△OEC,
∴△DBO∽△EOC,
∴△BOD∽△BCO∽△OCE.
分析:首先证明△ADO≌△AEO(ASA),进而得出∠BDO=∠OEC=∠BOC,即可得出△DBO∽△OBC,再求出△BOC∽△OEC,△DBO∽△EOC,即可得出答案.
点评:此题主要考查了相似三角形的判定与性质和全等三角形判定与性质,根据已知得出∠BDO=∠OEC=∠BOC是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,△ABC的三个内角大小分别为x,x,3x,则x的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•安徽模拟)如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,
(1)求证:∠BOD=∠COE.
(2)如果AB=17,AC=8,BC=15,利用三角形内心性质及相关知识,求OE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC三内角平分线交于点D,过点D引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE.

查看答案和解析>>

同步练习册答案