一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:
(1)二次函数和反比例函数的关系式.
(2)弹珠在轨道上行驶的最大速度.
![]()
【答案】(1)v=
(2<t≤5) (2)8米/分
【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;
(2)把t=2代入(1)中二次函数解析式即可.
详【解析】
(1)v=at2的图象经过点(1,2),
∴a=2.
∴二次函数的解析式为:v=2t2,(0≤t≤2);
设反比例函数的解析式为v=
,
由题意知,图象经过点(2,8),
∴k=16,
∴反比例函数的解析式为v=
(2<t≤5);
(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,
∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分.
点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.
【题型】解答题
【结束】
24
阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
![]()
科目:初中数学 来源:2018年河南省周口市沈丘县中考数学一模试 题型:解答题
每年的4月23日是“世界读书日”,今年其主题是“今天你读了吗”,某学校为了解八年纺学生的课外阅读情况,随机抽查部分学生,并对其4月份的课外阅读量进行统计分析,绘制成如图所示的统计图数据不完整![]()
.![]()
![]()
根据图示信息,解答下列问题:
求被抽查学生的人数及课外阅读量的众数;![]()
在扇形统计图中填写![]()
和![]()
的值,并将条形统计图补充完整;![]()
若规定:4月份阅读3本以上![]()
含3本![]()
课外书籍者为完成阅读任务,据此估计该校八年级600名学生中,完成4月份课外阅读任务的约有多少人?![]()
查看答案和解析>>
科目:初中数学 来源:北京市石景山区2018届九年级中考二模数学试卷 题型:解答题
在平面直角坐标系中,对于任意点P,给出如下定义:若⊙P的半径为1,则称⊙P为点P的“伴随圆”.![]()
(1)已知,点
,
①点
在点P的“伴随圆” (填“上”或“内”或“外”);
②点
在点P的“伴随圆” (填“上”或“内”或“外”);
(2)若点P在轴上,且点P的“伴随圆”与直线![]()
相切,求点P的坐标;
查看答案和解析>>
科目:初中数学 来源:北京市石景山区2018届九年级中考二模数学试卷 题型:单选题
任意掷一枚骰子,下列情况出现的可能性比较大的是( )
A. 面朝上的点数是6 B. 面朝上的点数是偶数
C. 面朝上的点数大于2 D. 面朝上的点数小于2
查看答案和解析>>
科目:初中数学 来源:湖南省邵阳市双清区2018届九年级中考数学模拟试卷 题型:解答题
典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:
![]()
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)扇形统计图中a= ,b= ;并补全条形统计图;
(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.
(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?
查看答案和解析>>
科目:初中数学 来源:湖南省邵阳市双清区2018届九年级中考数学模拟试卷 题型:填空题
如图,AD是△ABC的角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源:江苏省淮安市淮安区2016-2017学年八年级(下)第一次月考数学试卷 题型:解答题
如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.
![]()
(1)求该班有多少名学生?
(2)补上骑车分布直方图的空缺部分;
(3)在扇形统计图中,求步行人数所占的圆心角度数;
(4)若全年级有900人,估计该年级骑车人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com