精英家教网 > 初中数学 > 题目详情

车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.

(1)一辆车经过此收费站时,选择 A通道通过的概率是

(2)求两辆车经过此收费站时,选择不同通道通过的概率.

(1);(2). 【解析】试题分析:(1)根据概率公式即可得到结论; (2)画出树状图即可得到结论. 试题解析:(1)选择 A通道通过的概率=, 故答案为: ; (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.
练习册系列答案
相关习题

科目:初中数学 来源:2017-2018学年黑龙江省大庆市杜尔伯特县九年级(上)期末数学试卷(五四学制) 题型:填空题

如图,在锐角△ABC中,以BC为直径的半圆O分别交AB,AC于D,E两点,且cosA=,则S△ADE:S四边形DBCE的值为_____.

【解析】试题解析:连接BE; ∵BC是⊙O的直径 ∴∠BEC=90°; 在Rt△ABE中,cosA=,即; ∵四边形BEDC内接于⊙O, ∴∠ADE=∠ACB,∠AED=∠ABC, ∴△ADE∽△ABC, ∴; 所以S△ADE:S四边形DBCE的值为. 故答案为: .

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:解答题

甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动. 

(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米? 

(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)

(1)甲的平均攀登速度是12米/分钟;(2)倍. 【解析】试题分析:(1)根据题意可以列出相应的分式方程,从而可以求得甲的平均攀登速度; (2)根据(1)中甲的速度可以表示出丙的速度,再用甲的速度比丙的平均攀登速度即可解答本题. 试题解析::(1)设乙的速度为x米/分钟, , 解得,x=10, 经检验,x=10是原分式方程的解, ∴1.2x=12, ...

查看答案和解析>>

科目:初中数学 来源:山东省德州地区2017-2018学年度第一学期期末检测八年级数学试卷 题型:单选题

下列各式能用平方差公式分解因式的有(   )

①x2+y2;②x2-y2;③-x2-y2;④-x2+y2;⑤-x2+2xy-y2.

A. 1个B、2个C、3个D、4个

B 【解析】试题解析:能用平方差公式分解因式的有;②x2-y2;④-x2+y2;,共2个, 故选B.

查看答案和解析>>

科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:解答题

如图,直线轴、轴分别交于点B、C,经过B、C两点的抛物线轴的另一个交点为A.

(1)求该抛物线的解析式;

(2)若点P在直线下方的抛物线上,过点P作PD∥轴交于点D,PE∥轴交于点E,

求PD+PE的最大值;

(3)设F为直线上的点,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.

(1)抛物线的解析式为(2)当时,PD+PE的最大值是3(3)能,以A、B、P、F为顶点的四边形能构成平行四边形.此时点F的坐标为F(3, )或F(1, ) 【解析】试题分析: (1)在中求出和时与的值可得点 的坐标,根据点坐标利用待定系数法可得抛物线解析式; (2)设P(, ),则D(, ), E(, ),用表示出,配方即可求出最大值. (3)令,求出点坐标,求出的值,然后分...

查看答案和解析>>

科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:填空题

如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为____________.

【解析】试题解析: 在△ABC中, ∵AB=5,BC=3,AC=4, 如图:设切点为D,连接CD, ∵AB是C的切线, ∴CD⊥AB, ∴AC?BC=AB?CD, 即 ∴的半径为 故答案为:

查看答案和解析>>

科目:初中数学 来源:广东省汕头市澄海区2018届九年级上学期期末质量检测数学试卷 题型:单选题

将二次函数的图象沿轴向右平移2个单位长度,得到的函数表达式是( )

A. B. C. D.

D 【解析】【解析】 ∵=,∴二次函数的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=,即: ,故选D.

查看答案和解析>>

科目:初中数学 来源:2018人教版八年级数学下册练习:第十八章达标检测卷 题型:填空题

如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的关系是S1 S2(填“>”或“<”或“=”)

=. 【解析】分析:本题考查的是矩形的性质. 解析:因为ABCD是矩形,所以△ABD与△BCD的面积相等,同理△PKD与△NKD的面积相等, △BMK与△BQK的面积相等,∴S1=S2. 故答案为=.

查看答案和解析>>

科目:初中数学 来源:广东省东莞市翰林学校2017-2018学年八年级(上)期中数学试卷(word版含答案解析) 题型:填空题

已知某正数的两个平方根分别是m+4和2m﹣16,则这个正数的立方根为_____________.

4 【解析】试题解析:∵某正数的两个平方根分别是m+4和2m-16, 可得:m+4+2m-16=0, 解得:m=4, ∴这个正数的平方根为8和-8. ∴这个正确为64. ∴.

查看答案和解析>>

同步练习册答案