精英家教网 > 初中数学 > 题目详情

在一次环保知识测试中,三年一班的两名同学根据班级成绩(分数为整数)分别绘制了不同的频率分布直方图,如图1、2,已知图1从左到右每个小组的频率分别为0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1:2:4:7:6:3:2,请结合条件和频率分布直方图回答下列问题:

(1)三年一班参加测试的人数是多少?

(2)若这次测试的成绩80分以上(含80分)为优秀,则优秀率是多少?

(3)若这次测试的成绩60分以上(含60分)为及格,则及格率是多少?

(1)50人(2)44%(3)96% 【解析】试题分析:(1)根据频率分布直方图知道68.5~76.5小组为第三小组,频率为0.24,频数为12,由此即可求出三年一班参加测试的人数; (2)根据图2从左到右每个小组的频数之比为1:2:4:7:6:3:2可以求出各个小组的频率,然后就可以找到这次测试的成绩80分以上(含80分)的人数,也就可以求出优秀率; (3)根据图1可以得到这次测试的成...
练习册系列答案
相关习题

科目:初中数学 来源:2017年辽宁省营口市大石桥市水源镇中考数学模拟试卷 题型:填空题

2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400这个数用科学记数法表示为_____.

3.844×105 【解析】384400=3.844×105.

查看答案和解析>>

科目:初中数学 来源:2017年江苏省苏州市中考数学模拟试卷(三) 题型:解答题

关于的一元二次方程x2+2x+k+1=0的有两个实数解是x1和x2.

(1)求k的取值范围;

(2)如果x1+x2-x1x2<-1且k为整数,求k的值.

(1)k≤0;(2)k的值为-1和0. 【解析】试题分析:(1)∵方程有实数根 ∴⊿=22-4k+1)≥0解得 k≤0. (2)根据一元二次方程根与系数的关系,得x1+x2=-2, x1x2=k+1 得 -2—( k+1)<-1 解得 k>-2 ∴ -2<k≤0 ∵k为整数 ∴k的值为-1和0. 试题解析:【解析】 ∵(1)方程有实数根 ∴⊿=22-4k+1)≥0....

查看答案和解析>>

科目:初中数学 来源:2017年江苏省苏州市中考数学模拟试卷(三) 题型:单选题

使有意义的x的取值范围是(  )

A. x> B. x>- C. x≥ D. x≥-

C 【解析】由题意得:3x-1≥0,解得x≥. 故选C.

查看答案和解析>>

科目:初中数学 来源:2017年辽宁省中考数学模拟试卷 题型:解答题

如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.

(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.

(2)当⊙D与AB边相切时,求BD的长.

(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?

(1) y=5-x(0<x≤);(2) ;(3) 或. 【解析】 试题分析:(1)通过相似三角形△BDE∽△BAC的对应边成比例得到,把相关线段的长度代入并整理得到y=5-x(0<x≤); (2)如图,假设AB与⊙D相切于点F,连接FD.通过相似三角形△BFD∽△BGA的对应边成比例得到.DF=6-BD,由勾股定理求得AG=4,BA=5,所以把相关线段的长度代入便可以求得BD的长...

查看答案和解析>>

科目:初中数学 来源:2017年辽宁省中考数学模拟试卷 题型:填空题

(3分)如图,已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP=_____.

【解析】试题解析: 中, 设AC交圆于M,延长AC交圆于N, 则 根据AM?AN=AP?AB得, 解得 故答案为:

查看答案和解析>>

科目:初中数学 来源:2017年辽宁省中考数学模拟试卷 题型:单选题

如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若的度数为70°,则∠BAE的度数为(  )

A. 140° B. 70° C. 35° D. 20°

C 【解析】试题解析:∵的度数为 故选C.

查看答案和解析>>

科目:初中数学 来源:2017年天津109中中考数学模拟试卷 题型:填空题

如图在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为___________.

6 【解析】试题解析:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C, ∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′, ∵CB′∥AB, ∴∠B′CA′=∠D, ∴△CAD∽△B′A′C, ∴, ∴, 解得AD=8, ∴BD=AD-AB=8-2=6.

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市2018届九年级上学期期中考试数学试卷(含解析) 题型:解答题

已知二次函数图象的顶点为直线的交点.

)用含的代数式来表示顶点的坐标.

)当时,二次函数的值均随的增大而增大,求的取值范围.

)若,当取值为时,二次函数,求的取值范围.

(1) ; (2) m≤;(3) 0≤t≤4 【解析】试题分析:(1)已知直线和,列出方程求出 的等量关系式即可求出点的坐标; (2)根据题意得出 解不等式求出的取值; (3)当时,当 时,二次函数最小值,解不等式组即可求得. 试题分析:()由得, ∴. ()∵开口向上, ∴图象在对称轴右侧随增大而增大, ∴, 即. ()∵时, , ∴抛物...

查看答案和解析>>

同步练习册答案