精英家教网 > 初中数学 > 题目详情
在如图的平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题:
(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1并写出点A1的坐标;
(2)将△ABC绕点B逆时针旋转90°,画出旋转后的△A2BC2,并写出点C2的坐标.
考点:作图-旋转变换,作图-平移变换
专题:作图题
分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;
(2)根据网格结构找出点A、C绕点B逆时针旋转90°的对应点A2、C2的位置,然后与点B顺次连接即可,再根据平面直角坐标系写出点C2的坐标.
解答:解:(1)△A1B1C1如图所示,A1(4,-1);
(2)△A2BC2如图所示,C2(1,4).
点评:本题考查了利用平移变换作图,利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在?ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①∠OBE=
1
2
∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是(  )
A、①②③B、②③④
C、①③④D、①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式组:
x+1<3x-3   ①
1
2
(x-4)<
1
3
(x-4)  ②

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:(a+2)2+(2a+1)(2a-1)-4a(a+1),其中a=-
2

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,一次函数y=-
3
4
x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

快、慢两车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车早1小时到达甲地,快、慢两车距甲地的路程y(千米)与出发后所用的时间x(小时)的关系如图所示.
请结合图象信息解答下列问题:
(1)快、慢两车的速度各是多少?
(2)出发多少小时,两车距甲地的路程相等?
(3)直接写出在快车到达甲地前,两车相距10千米路程的次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=-
1
2
x+b(b>0)
分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D是直线BC上的动点,以M(2,0),N(12,0)为斜边端点作等腰直角三角形PMN,点P在第一象限.
(1)求直线AB过点P时b的值;
(2)在b的值变化过程中,若以P、B、D为顶点的三角形与△OAB相似,请求出所有符合条件的b的值;
(3)设矩形OACB与△PMN重叠部分的面积为S,当0<b<5时,求S与b的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度.
(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知矩形一边长为3×103cm,另一边长为400cm,将矩形面积用科学记数法表示为
 
cm2

查看答案和解析>>

同步练习册答案