精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,sinA=,BC=20,则△ABC的面积为________.

150 【解析】【解析】 在Rt△ABC中,∵∠C=90°,sinA==,∴AB==20÷=25,∴AC===15,则△ABC的面积为: AC•BC=×15×20=150.故答案为:150.
练习册系列答案
相关习题

科目:初中数学 来源:人教版七年级下册数学第7-10章综合测试卷 题型:单选题

某不等式组的解集在数轴上表示如图,则这个不等式组可能是(     )

A. B. C. D.  

B 【解析】试题解析:由数轴上不等式解集的表示法可知,此不等式组的解集为-2≤x<3, A、不等式组的解集为-2≤x≤3,故本选项错误; B、不等式组的解集为-2≤x<3,故本选项正确; C、不等式组的解集为-2<x<3,故本选项错误; D、不等式组的解集为-2<x≤3,故本选项错误. 故选B.

查看答案和解析>>

科目:初中数学 来源:浙江杭州西湖区公益中学2018届九年级上学期期中数学试卷 题型:解答题

如图,圆的直径为,在圆上位于直径的异侧有定点和动点,已知,点在半圆弧上运动(不与重合),过的垂线的延长线于点.

)求证:

)当点运动到弧中点时,求的长.

)当点运动到什么位置时, 的面积最大?并求这个最大面积

()证明见解析;();()为直径时最大, 最大值=. 【解析】试题分析:(1)由圆周角定理知∠CAB=∠CPD,而∠ACB=∠PCD=90°,即可判定△ABC∽△PCD,根据相似三角形的性质可得,即可得结论;(2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E.由题意知∠PCB=45°,CE=BE,而又∠CAB=∠CPB,得tan∠CPB=tan∠CAB=,代入数值可求得PE的值,从而求...

查看答案和解析>>

科目:初中数学 来源:浙江杭州西湖区公益中学2018届九年级上学期期中数学试卷 题型:单选题

如图,点在线段上,且,设,则的长是( ).

A. B. C. D.

A 【解析】由可得,解得或(负值舍去).故选A.

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第一章直角三角形的边角关系单元检测卷 题型:解答题

如图,D为等边△ABC边BC上一点,DE⊥AB于E,若BD:CD=2:1,DE=2, 求AE.

4 【解析】试题分析:由等边三角的性质可得:AB=BC,∠B=60°,由DE⊥AB于E,可得:∠DEB=90°,∠BDE=30°,由直角三角形中30°角所对的直角边等于斜边的一半,可得:BD=2BE,然后由勾股定理可求BE和BD的值,再由BD:CD=2:1,可求CD的长,进而确定BC的长,由AB=BC即可求出AE的长. 试题解析:∵△ABC是等边三角形, ∴AB=BC,∠B=60...

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第一章直角三角形的边角关系单元检测卷 题型:单选题

△ABC中,∠C=90°,sinA=, 则tanA的值是(  )

A. B. C. D.

A 【解析】【解析】 如图,∵sinA=,∴设BC=4x,AB=5x,∴AC=3x,∴tanA=.故选A.

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第一章直角三角形的边角关系单元检测卷 题型:单选题

如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是(   )

A. B. C. D. 2

C 【解析】试题分析:设点(2,1)为点C,过点C作CD⊥x轴,则tanα=.

查看答案和解析>>

科目:初中数学 来源:北师大版七年级下册数学 第五章 生活中的轴对称 单元检测卷 题型:填空题

如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos∠ECF=________ 

【解析】如图所示: ∵四边形ABCD是矩形, ∴∠B=90°,BC=AD=10, ∵E是BC的中点, ∴BE=CE=BC=5, ∴AE=, 由翻折变换的性质得:△AFE≌△ABE, ∴∠AEF=∠AEB,EF=BE=5, ∴EF=CE, ∴∠EFC=∠ECF, ∵∠BEF=∠EFC+∠ECF, ∴∠AEB=∠ECF, ∴cos...

查看答案和解析>>

科目:初中数学 来源:北师大版数学七年级下册 同步测试 1.2 幂的乘法与积的乘方 题型:填空题

下列式子计算正确的是(  )

A. x+x2=x3 B. 3x2﹣2x=x C. (3x2y)2=3x4y2 D. (﹣3x2y)2=9x4y2

D 【解析】试题解析:A. 不是同类项,不能合并,故错误. B. 不是同类项,不能合并,故错误. C. 故错误. D.正确. 故选D.

查看答案和解析>>

同步练习册答案