如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离(结果精确到0.1海里,参考数据:
≈1.41,
≈1.73).
|
答:A、C之间的距离为10.3海里. 分析:作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案. 解答:解:作AD⊥BC,垂足为D, 由题意得,∠ACD=45°,∠ABD=30°, 设CD=x,在RT△ACD中,可得AD=x, 在RT△ABD中,可得BD= 又∵BC=20,即x 解得: ∴AC=
点评:此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般. |
|
解直角三角形的应用-方向角问题 |
科目:初中数学 来源: 题型:
| 2 |
| 3 |
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(江苏扬州卷)数学(带解析) 题型:解答题
如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据
≈1.41,
≈1.73)![]()
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(江苏扬州卷)数学(解析版) 题型:解答题
如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据
≈1.41,
≈1.73)
![]()
查看答案和解析>>
科目:初中数学 来源:江苏中考真题 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2013年江苏省无锡市南长区宜兴市中考数学二模试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com