精英家教网 > 初中数学 > 题目详情

先画一个△ABC,然后选择△ABC中适当的边和角,用尺规作出与△ABC全等的三角形(不写作法,但要在所作的三角形中标出用到的条件).

答案:略
提示:

点拨:作法不唯一,可以利用已知两边夹角,已知两角夹边,已知三边的方法来求作三角形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AB、BC、AC三边的长分别为
10
5
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需要求△ABC的高,而借用网格就能计算出它的面积,这种方法叫做构图法.
(1)△ABC的面积为:
(2)若△DEF三边的长分别为
13
、2
5
29
,请在图①的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
(3)利用第(2)小题解题方法完成下题:如图②,一个六边形绿化区ABCDEF被分割成7个部分,其中正方形ABQP,CDRQ,EFPR的面积分别为13,20,29,且△PQR、△BCQ、△DER、△APF的面积相等,求六边形绿化区ABCDEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图题:
(1)如图,一个三角形状的水池,现要在水池内安装一个喷水头,且喷水头到池边的距离都要相等,请用尺规找出喷水池的位置点P.
(2)先用圆规画一个圆,然后在圆弧上确定三个点A、B、C,作线段AB、BC的垂直平分线,你能发现什么结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
3.5
3.5

(2)若△DEF三边的长分别为
5
8
17
,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为
3
3

(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是
110
110
m2

查看答案和解析>>

科目:初中数学 来源: 题型:

请先画一个直角三角形ABC,使∠C=90°,再画两锐角∠A,∠B的角平分线AO、BO交于点O.
(1)请计算∠AOB的度数;
(1)经过点O画直线DE∥AB交AC于点D,交BC于点E;其中有两个等腰三角形,找一个出来加以说明.

查看答案和解析>>

同步练习册答案