精英家教网 > 初中数学 > 题目详情
新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程的解为   
【答案】分析:首先根据题意可得y=x+m-2,再根据正比例函数的解析式为:y=kx(k≠0)可得m的值,把m的值代入关于x的方程,再解分式方程即可.
解答:解:根据题意可得:y=x+m-2,
∵“关联数”[1,m-2]的一次函数是正比例函数,
∴m-2=0,
解得:m=2,
则关于x的方程变为+=1,
解得:x=3,
检验:把x=3代入最简公分母2(x-1)=4≠0,
故x=3是原分式方程的解,
故答案为:x=3.
点评:此题主要考查了解分式方程,以及正比例函数,关键是求出m的值,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•荆州)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程
1
x-1
+
1
m
=1
的解为
x=3
x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程
1
x-1
+
1
m
=1
的解为
x=
5
3
x=
5
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海宁市模拟)新定义:[k,b]为一次函数y=kx+b(k≠0,k,b为常数)的“关联数”.若“关联数”[1,a-1]的一次函数是正比例函数,则二次函数y=x2-2x+a的顶点坐标是
(1,0)
(1,0)

查看答案和解析>>

科目:初中数学 来源:2012年湖北省荆州市中考数学试卷(解析版) 题型:填空题

新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程的解为   

查看答案和解析>>

同步练习册答案