科目: 来源:2007年云南省高中(中专)招生统一考试(课改实验区)数学试卷 题型:059
已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.
(1)求抛物线的函数关系式;
(2)若过点C的直线y=kx+b与抛物线相交于点E(4,m),请求出△CBE的面积S的值;
(3)在抛物线上求一点P0使得△ABP0为等腰三角形并写出P0点的坐标;
(4)除(3)中所求的P0点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点P(要求简要说明理由,但不证明);若不存在这样的点P,请说明理由.
查看答案和解析>>
科目: 来源:2007年四川省自贡市初中毕业暨升学考试数学试卷 题型:059
△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).
(1)求证:△ABC是直角三角形.
(2)若S△MNP=3S△NOP,①求cosC的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND(D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.
查看答案和解析>>
科目: 来源:2007年山东潍坊市初中学业水平考试数学试卷 题型:059
如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连结OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF∶S△QOF=1∶3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2007年山东滨州市中等学校招生统一考试数学试卷 题型:059
如图所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置.若不能,请说明理由.
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围.
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图),试探究直线EF与⊙O的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源:2007年辽宁沈阳市中等学校招生统一考试数学试卷 题型:059
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2007年辽宁大连旅顺口区初中毕业升学考试数学试卷 题型:059
已知抛物线y=ax2+bx+c经过
及原点O(0,0).
(1)求抛物线的解析式.
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC.是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,说明理由.
如果符合(2)中的Q点在x轴的上方,连结OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系?为什么?
查看答案和解析>>
科目: 来源:2007年辽宁大连旅顺口区初中毕业升学考试数学试卷 题型:059
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.
(1)求一次函数和二次函数的解析式,并求出点B的坐标.
(2)当SR=2RP时,计算线段SR的长.
(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15.若存在,求t的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源:2007年浙江省丽水市初中毕业生学业考试、数学试卷 题型:059
如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且AB∥OC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:
求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是________;
A.逐渐增大
B.逐渐减少
C.先增大后减少
D.先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.
查看答案和解析>>
科目: 来源:2007年四川省乐山市高中阶段教育学校招生统一考试数学试卷(附答案) 题型:059
如图,抛物线y=x2+bx+c(b≤0)的图象与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-2,0);直线x=1与抛物线交于点E,与x轴交于点F,且45°≤∠FAE≤60°.
(1)用b表示点E的坐标;
(2)求实数b的取值范围;
(3)请问△BCE的面积是否有最大值?若有,求出这个最大值;若没有,请说明理由.
查看答案和解析>>
科目: 来源:2007年山东省日照市中等学校统一招生考试数学试卷(大纲卷)(附答案) 题型:059
如图,直线EF将矩形纸片ABCD分成面积相等的两部分,E、F分别与BC交于点E,与AD交于点F(E,F不与顶点重合),设AB=a,AD=b,BE=x.
(Ⅰ)求证:AF=EC;
(Ⅱ)用剪刀将纸片沿直线EF剪开后,再将纸片ABEF沿AB对称翻折,然后平移拼接在梯形ECDF的下方,使一底边重合,直腰落在边DC的延长线上,拼接后,下方的梯形记作
.
(1)求出直线
分别经过原矩形的顶点A和顶点D时,所对应的x∶b的值;
(2)在直线
经过原矩形的一个顶点的情形下,连接
,直线
与EF是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a与b满足什么关系时,它们垂直?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com