相关习题
 0  272083  272091  272097  272101  272107  272109  272113  272119  272121  272127  272133  272137  272139  272143  272149  272151  272157  272161  272163  272167  272169  272173  272175  272177  272178  272179  272181  272182  272183  272185  272187  272191  272193  272197  272199  272203  272209  272211  272217  272221  272223  272227  272233  272239  272241  272247  272251  272253  272259  272263  272269  272277  366461 

科目: 来源: 题型:


在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是      

查看答案和解析>>

科目: 来源: 题型:


如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的面积      

查看答案和解析>>

科目: 来源: 题型:


如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE沿AE折叠,当点D的对应点刚好D落在矩形ABCD的对称轴上时,则DE的长为      

 

查看答案和解析>>

科目: 来源: 题型:


先化简:÷(),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.

查看答案和解析>>

科目: 来源: 题型:


如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.

(1)求证:EB=EC;

(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:


遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:

(1)参加调查测试的学生为      人;

(2)将条形统计图补充完整;

(3)本次调查测试成绩中的中位数落在      组内;

(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.

查看答案和解析>>

科目: 来源: 题型:


如图,一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和

30°,

(1)求∠BPQ的度数;

(2)求该电线杆PQ的高度.(结果精确到1m)

查看答案和解析>>

科目: 来源: 题型:


如图,反比例函数y=(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,8)作AB垂直于x轴于点B,交反比例函数图象于点D,且AD=3BD.

(1)求k的值;

(2)求点C的坐标;

(3)在y轴上是否存在一点P,使点P到C、D两点距离之和PC+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


某商场同时购进甲、乙两种商品共200件,其进价和售价如下表,

商品名称

进价(元/件)

80

100

售价(元/件)

160

240

设其中甲种商品购进x件

(1)若该商场购进这200件商品恰好用去17900元,求购进甲、乙两种商品各多少件?

(2)若设该商场售完这200件商品的总利润为y元.

①求y与x的函数关系式;

②该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?

(3)实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.

查看答案和解析>>

科目: 来源: 题型:


【提出问题】

(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.

【类比探究】

(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.

【拓展延伸】

(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案