相关习题
 0  279640  279648  279654  279658  279664  279666  279670  279676  279678  279684  279690  279694  279696  279700  279706  279708  279714  279718  279720  279724  279726  279730  279732  279734  279735  279736  279738  279739  279740  279742  279744  279748  279750  279754  279756  279760  279766  279768  279774  279778  279780  279784  279790  279796  279798  279804  279808  279810  279816  279820  279826  279834  366461 

科目: 来源: 题型:选择题

5.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

4.(1)如图1,若CO⊥AB,垂足为O,OE、OF分别平分∠AOC与∠BOC.求∠EOF的度数;
(2)如图2,若∠AOC=∠BOD=80°,OE、OF分别平分∠AOD与∠BOC.求∠EOF的度数;
(3)若∠AOC=∠BOD=α,将∠BOD绕点O旋转,使得射线OC与射线OD的夹角为β,OE、OF分别平分∠AOD与∠BOC.若α+β≤180°,α>β,则∠EOC=$\frac{1}{2}α±\frac{1}{2}β$.(用含α与β的代数式表示)

查看答案和解析>>

科目: 来源: 题型:解答题

3.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行知识探索.
【回忆】
如图,A、B是河l两侧的两个村庄.现要在河l上修建一个抽水站C,使它到A、B两村庄的距离的和最小,请在图中画出点C的位置,并说明理由.

【探索】
(1)如图,A、B两个村庄在一条笔直的马路的两端,村庄 C在马路外,要在马路上建一个垃圾站O,使得AO+BO+CO最小,请在图中画出点O的位置,并说明理由.

(2)如图,A、B、C、D四个村庄,现建一个垃圾站O,使得AO+BO+CO+DO最小,请在图中画出点O的位置,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.(1)已知:如图1,点O为直线AB上任意一点,射线OC为任意一条射线.OD、OE分别平分∠AOC和∠BOC,则∠DOE=90°;
(2)已知:如图2,点O为直线AB上任意一点,射线OC为任意一条射线,其中∠COD=$\frac{1}{3}$∠AOC,∠COE=$\frac{1}{3}$∠BOC,求∠DOE得度数;
(3)如图3,点O为直线AB上任意一点,OD是∠AOC的平分线,OE在∠BOC内,∠COE=$\frac{1}{3}$∠BOC,∠DOE=72°,求∠BOE的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.
(1)在图1中,射线OC在∠AOB的内部.
①若锐角∠BOC=30°,则∠MON=45°;
②若锐角∠BOC=n°,则∠MON=45°.
(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.
(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.

查看答案和解析>>

科目: 来源: 题型:选择题

20.华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程(  )
A.20000(1+x)2=80000B.20000(1+x)+20000(1+x)2=80000
C.20000(1+x2)=80000D.20000+20000(1+x)+20000(1+x)2=80000

查看答案和解析>>

科目: 来源: 题型:解答题

19.在正方形ABCD中,DE为正方形的外角∠ADF的角平分线,点G在线段AD上,过点G作PG⊥DE于点P,连接CP,过点D作DQ⊥PC于点Q,交射线PG于点H.

(1)如图1,若点G与点A重合.
①依题意补全图1;
②判断DH与PC的数量关系并加以证明;
(2)如图2,若点H恰好在线段AB上,正方形ABCD的边长为1,请写出求DP长的思路(可以不写出计算结果).

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB-BA、CD-DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在Rt△ABC中,∠ACB=90°,AC=12cm,BC=4cm,点E从点C出发沿射线CA以每秒3cm的速度运动,同时点F从点B出发沿射线BC以每秒1cm的速度运动.设运动时间为t秒.
(1)若0<t<4,试问:t为何值时,以E、C、F为顶点的三角形与△ABC相似;
(2)若∠ACB的平分线CG交△ECF的外接圆于点G.
①试说明:当0<t<4时,CE、CF、CG在运动过程中,满足CE+CF=$\sqrt{2}$CG;
②试探究:当t≥4时,CE、CF、CG的数量关系是否发生变化,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.求x值
(1)(x+1)2=36                      
(2)(x+10)3=-27.

查看答案和解析>>

同步练习册答案