相关习题
 0  294321  294329  294335  294339  294345  294347  294351  294357  294359  294365  294371  294375  294377  294381  294387  294389  294395  294399  294401  294405  294407  294411  294413  294415  294416  294417  294419  294420  294421  294423  294425  294429  294431  294435  294437  294441  294447  294449  294455  294459  294461  294465  294471  294477  294479  294485  294489  294491  294497  294501  294507  294515  366461 

科目: 来源: 题型:解答题

15.【原题再现】课本第81页课内练习第1题:如图,在△ABC中,D为BC边上一点,DB=DC,DE⊥AB于点E,DF⊥AC于点F,且DE=DF,求证:AB=AC.
【探究思考】
同学们完成这道题目后,在老师的启发下对问题进行了反思探究,提出了如下思考:
①把题中的条件“DB=DC”和结论“AB=AC”互换得到的命题是否成立?
②题中的“D为BC上一点”改为“D为△ABC内部一点”,是否仍能得到AB=AC?
【问题解决】
(1)请你对上述两个问题作出判断,直接在横线上写“是”或“否”;
(2)选择其中一个问题画出图形,并说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,已知P是线段AB的中点,点C、D把线段AB三等分,若CP=2,则AB的长为12.

查看答案和解析>>

科目: 来源: 题型:填空题

13.当三角形中有一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中β称为“特征角”,若一个“特征三角形”是锐角三角形,则其“特征角”β的大小范围是30°<β<45°.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.
(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;
(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

11.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?

查看答案和解析>>

科目: 来源: 题型:解答题

10.两个工程小组共同参与一项筑路工程,需在规定日期内完成,由甲组单独做,恰好按期完成,由乙组单独做,要超过规定日期3天才完成,结果两队合作了2天,余下部分由乙组单独做,正好在规定日期内完成,问规定日期是几天?

查看答案和解析>>

科目: 来源: 题型:填空题

9.正方形ABCD中,E、F分别在AD、DC上,∠ABE=∠CBF=15°,G是AD上另一点,且∠BGD=120°,连接EF、BG、FG、EF、BG交于点H,则下面结论:①DE=DF;②△BEF是等边三角形;③∠BGF=45°;④BG=EG+FG中,正确的是①②④(请填番号)

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后ON与OC重合?
(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.
(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,对于P(m,n),若点Q的坐标为(m,|m-n|),则称点Q为点P的关联点.
(1)请直接写出点(2,2)的关联点;
(2)如果点P在一次函数y=x-1的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)已知点P在一次函数y=x(x>0)和一次函数y=$\frac{1}{2}$x(x>0)所围成的区域内,且点P的“关联点”Q在二次函数y=x2的图象上,求线段PQ的最大值及此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知关于x的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.
(1)若关于x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;
(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+$\frac{1}{2}$b=0,p、q分别是方程①和方程②的实数根,且p≠q,b≠0.试问方程①和方程②是否能互为“同根轮换方程”?如果能,用含a的代数式分别表示p和q;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案