相关习题
 0  294443  294451  294457  294461  294467  294469  294473  294479  294481  294487  294493  294497  294499  294503  294509  294511  294517  294521  294523  294527  294529  294533  294535  294537  294538  294539  294541  294542  294543  294545  294547  294551  294553  294557  294559  294563  294569  294571  294577  294581  294583  294587  294593  294599  294601  294607  294611  294613  294619  294623  294629  294637  366461 

科目: 来源: 题型:解答题

5.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2,例如二次三项式x2-2x+9的配方过程如下:x2-2x+9=x2-2x+1-1+9=(x-1)2+8.
请根据阅读材料解决下列问题:
(1)比照上面的例子,将下面的两个二次三项式分别配方:
①x2-4x+1=(x-2)2-3;
②3x2+6x-9=3(x2+2x)-9=3(x+1)2-12;
(2)已知x2+y2-6x+10y+34=0,求3x-2y的值;
(3)已知a2+b2+c2+ab-3b+2c+4=0,求a+b+c的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,A(0,2),B(1,0),点C为线段AB的中点,将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)若该抛物线经过原点O,且a=-$\frac{1}{3}$,求该抛物线的解析式;
(2)在(1)的条件下,点P(m,n)在抛物线上,且∠POB锐角,满足∠POB+∠BCD<90°,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,点P是等边三角形ABC内部一个动点,∠APB=120°,⊙O是△APB的外接圆.AP,BP的延长线分别交BC,AC于D,E.
(1)求证:CA,CB是⊙O的切线;
(2)已知AB=6,G在BC上,BG=2,当PG取得最小值时,求PG的长及∠BGP的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|a+2|+(b-4)2=0

(1)求a,b的值.
(2)在坐标轴上是否存在一点M,使△COM的面积=$\frac{1}{2}$△ABC的面积,求出点M的坐标.
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,$\frac{∠OPD}{∠DOE}$的值是否会改变?若不变,求其值;若改变,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知:如图,在平行四边形ABCD中,⊙O是经过A、B、C三点的圆,CD与⊙O相切于点C,点P是$\widehat{BC}$上的一个动点(点P不与B、C点重合),连接PA、PB、PC.
(1)求证:CA=CB;
(2)①点P满足当AC=AP时,△CPA≌△ABC,请说明理由;
②当∠ABC的度数为60时,四边形ABCD是菱形.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,AB为⊙O的直径,PB、PC分别是⊙O的切线,切点为B、C,PC、BA的延长线交于点D,DE⊥PO,交PO的延长线于点E.
(1)求证:∠DPO=∠EDB;
(2)若PB=3,DB=4,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知x,y满足方程组$\left\{\begin{array}{l}x-2y=-5\\ 2x+y=0\end{array}\right.$,求代数式(x-y)2-(x+2y)(x-2y)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图:已知抛物线y=-$\frac{1}{2m}$(x+3m)(x-m)(m>0)与x轴交于A、B两点(点A在点B左侧),与y交于点C,抛物线对称轴与x轴交于点D,$E(\frac{{9\sqrt{3}}}{2},0)$为x轴上一点.
(1)写出点A、B、C的坐标(用m表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D、E重合),过P作PQ⊥EC作PH⊥DF,判断$\frac{PQ}{DC}+\frac{PH}{EF}$是否为定值,若是,请求出定值,若不是,请说明理由;
(3)如图②,将线段AB绕点A顺时针旋转30°,与y相交于点M,连接BM.点S是线段AM的中点,连接OS.若点N是线段BM上一个动点,连接SN,将△SMN绕点S逆时针旋转60°得到△SOT,延长TO交BM于点K.若△KTN的面积等于△ABM的面积的$\frac{1}{12}$,求线段MN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图菱形ABCD中,∠ADC=60°,M、N分别为线段AB,BC上两点,且BM=CN,且AN,CM所在直线相交于E.
(1)证明△BCM≌△CAN;
(2)∠AEM=60°;
(3)求证DE平分∠AEC;
(4)试猜想AE,CE,DE之间的数量关系并证明.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知图①中抛物线y=ax2+bx+c经过点D(-1,0)、C(0,-1)、E(1,0).
(1)求图①中抛物线的函数表达式;
(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为y=-x2
(3)图②中抛物线与直线y=-$\frac{1}{2}$x-$\frac{1}{2}$相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x的取值范围.

查看答案和解析>>

同步练习册答案