相关习题
 0  294660  294668  294674  294678  294684  294686  294690  294696  294698  294704  294710  294714  294716  294720  294726  294728  294734  294738  294740  294744  294746  294750  294752  294754  294755  294756  294758  294759  294760  294762  294764  294768  294770  294774  294776  294780  294786  294788  294794  294798  294800  294804  294810  294816  294818  294824  294828  294830  294836  294840  294846  294854  366461 

科目: 来源: 题型:填空题

16.已知平行四边形ABCD的周长为44,过点A作AE⊥直线BC于E,作AF⊥直线CD于点F,若AE=5,AF=6,则CE+CF的值为2+$\sqrt{3}$或22+11$\sqrt{3}$..

查看答案和解析>>

科目: 来源: 题型:填空题

15.矩形的两条对角线的一个夹角为120°,两条对角线的和为4cm,则这个矩形的一条较长边长为$\sqrt{3}$cm.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,请证明?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?直接写出条件,不需要证明.
(3)若AC=4$\sqrt{2}$,BC=3,在(2)的条件下,求△ABC中AB边上的高.

查看答案和解析>>

科目: 来源: 题型:解答题

13.观察、思考、解答:
($\sqrt{2}$-1)2=($\sqrt{2}$)2-2×1×$\sqrt{2}$+12=2-2$\sqrt{2}$+1=3-2$\sqrt{2}$
反之3-2$\sqrt{2}$=2-2$\sqrt{2}$+1=($\sqrt{2}$-1)2
∴3-2$\sqrt{2}$=($\sqrt{2}$-1)2
∴$\sqrt{3-2\sqrt{2}}$=$\sqrt{2}$-1
(1)仿上例,化简:$\sqrt{6-2\sqrt{5}}$;
(2)若$\sqrt{a+2\sqrt{b}}$=$\sqrt{m}$+$\sqrt{n}$,则m、n与a、b的关系是什么?并说明理由;
(3)已知x=$\sqrt{4-\sqrt{12}}$,求($\frac{1}{x-2}$+$\frac{1}{x+2}$)•$\frac{{x}^{2}-4}{2(x-1)}$的值(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,△ABC中,∠ACB=90°,点E在BC上,以CE为直径的⊙O交AB于点F,AO∥EF
(1)求证:AB是⊙O的切线;
(2)如图2,连结CF交AO于点G,交AE于点P,若BE=2,BF=4,求$\frac{AP}{PE}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知正方形ABCD中,以BD为边作菱形BFED,则∠E的度数为(  )
A.10°B.15°C.30°D.45°

查看答案和解析>>

科目: 来源: 题型:解答题

10.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2-4a+4=0,则a=2.b=0.
(2)已知x2+2y2-2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:解答题

9.在边长为1的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图1,当点M在AB边上时,连接BN.求证:△ABN≌△ADN;
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(1≤x≤2)试问:x为何值时,△ADN为等腰三角形.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由;
(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.解方程:
(1)1+$\frac{3x}{x-2}$=$\frac{6}{x-2}$;
(2)$\frac{1}{2x-1}$=$\frac{1}{2}$-$\frac{3}{4x-2}$.

查看答案和解析>>

同步练习册答案