相关习题
 0  305722  305730  305736  305740  305746  305748  305752  305758  305760  305766  305772  305776  305778  305782  305788  305790  305796  305800  305802  305806  305808  305812  305814  305816  305817  305818  305820  305821  305822  305824  305826  305830  305832  305836  305838  305842  305848  305850  305856  305860  305862  305866  305872  305878  305880  305886  305890  305892  305898  305902  305908  305916  366461 

科目: 来源: 题型:选择题

5.一个数的相反数是3,这个数是(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图1,已知△ABC与△ECD,AC=BC,∠ACB=∠DCE=90°,连接BE、AD,若BE=AD.
(1)求证:BE⊥AD;
(2)如图2,当E点在AB上时,连接BD,过E点作EH⊥BD于H,延长EH与∠ACB外角的平分线交于F,请你探究线段EF与BD的数量关系,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,矩形ABCD的边长AB=2,BC=2+$\sqrt{3}$,正三角形EFG的边长是2.
(1)如图1,当EF与AB重合时,求DG的长;
(2)把正三角形EFG绕点F顺时针方向旋转30度,点G落在BC上,如图2,求此时DE2的值;
(3)在图2中,把正三角形EFG绕点G顺时针方向旋转90度,点E落在DC上,请画出此时的△EFG,并求出在此旋转过程中线段DE的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图,在直线上有A、B两点,AB=10cm,⊙A的半径是1cm,⊙B的半径是2cm,⊙A以3cm/s的速度向右运动,同时⊙B以1cm/s的速度向右运动.设运动时间为t秒,当⊙A与⊙B相切时,t的值是3.5、4.5、5.5、6.5.

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是(  )
A.$\frac{AC}{DE}$=$\frac{AB}{AD}$B.∠B=∠DC.AD∥BCD.∠BAC=∠D

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB,过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D,运动时间为t秒.
(1)当点B与点D重合时,求t的值;
(2)当t为何值时,S△BCD=$\frac{25}{4}$?

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知二次函数y=x2-x-1的图象与x轴的一个交点为(m,0),则代数式m2-m+2015的值为2016.

查看答案和解析>>

科目: 来源: 题型:解答题

18.【知识迁移】
我们知道,函数y=a(x-m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y=$\frac{k}{x-m}$+n(k≠0,m>0,n>0)的图象是由反比例函数y=$\frac{k}{x}$的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).
【理解应用】
函数y=$\frac{3}{x-1}$+1的图象可由函数y=$\frac{3}{x}$的图象向右平移1个单位,再向上平移1个单位得到,其对称中心坐标为(1,1).
【灵活应用】
如图,在平面直角坐标系xOy中,请根据所给的y=$\frac{-4}{x}$的图象画出函数y=$\frac{-4}{x-2}$-2的图象,并根据该图象指出,当x在什么范围内变化时,y≥-1?
【实际应用】
某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=$\frac{4}{x+2}$;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y2=$\frac{4}{x-a}$,如果记忆存留量为$\frac{1}{2}$时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知四边形ABCD中,∠ABC=90°,AB∥CD,BC=12,AB>6,点E为BC的中点,连接AE,ED,△ABE与△AFE关于直线AE对称,且点F在AD上
(1)求证:CD=DF;
(2)设AB=y,CD=x,写出y与x之间的关系式;
(3)过点F作FM∥CD交ED于点M,连接CM
①判断四边形DFMC的形状,并证明;
②若AB=6$\sqrt{3}$,求△EMF的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

16.如图,正方形OABC的边长为6,顶点A,C在坐标轴上,点P在AB上,CP交OB于点Q,S△BPQ=$\frac{1}{4}$S△OQC,则点Q的坐标为(4,4).

查看答案和解析>>

同步练习册答案