科目: 来源:福建省2017-2018学年第二学期期中考试七年级数学试卷 题型:解答题
已知,如图,
,,求证:![]()
.![]()
![]()
证明:∵
,
∴________________(同旁内角互补,两直线平行),
∴=________(两直线平行,内错角相等),![]()
又∵(已知),![]()
∴________________(内错角相等,两直线平行),
∴=________(两直线平行,内错角相等),![]()
∴-![]()
=________________,![]()
即.![]()
查看答案和解析>>
科目: 来源:福建省2017-2018学年第二学期期中考试七年级数学试卷 题型:解答题
如图,在直角坐标系中,![]()
(1)请写出各点的坐标.![]()
(2)直接写出
.
(3)若把向上平移2个单位,再向右平移2个单位得![]()
,在图中画出![]()
,并写出![]()
的坐标.![]()
![]()
查看答案和解析>>
科目: 来源:福建省2017-2018学年第二学期期中考试七年级数学试卷 题型:解答题
某商场用36万元购进、![]()
两种商品,销售完后共获利6万元,其进价和售价如表.![]()
![]()
(1)该商场购进、![]()
两种商品各多少件?![]()
(2)商场第二次以原进价购进、![]()
两种商品.购进![]()
种商品的件数不变,而购进![]()
种商品的件数是第一次的2倍,![]()
种商品按原售价出售,而![]()
种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,![]()
种商品最低售价为每件多少元?![]()
查看答案和解析>>
科目: 来源:福建省2017-2018学年第二学期期中考试七年级数学试卷 题型:解答题
探究规律:我们有可以直接应用的结论:若两条直线平行,那么在一条直线上任取一点,无论这点在直线的什么位置,这点到另一条直线的距离均相等.例如:如图1,两直线∥![]()
,两点![]()
,![]()
在![]()
上,![]()
⊥![]()
于![]()
,![]()
⊥![]()
于![]()
,则![]()
.![]()
如图2,已知直线∥![]()
,![]()
,![]()
为直线![]()
上的两点,![]()
.![]()
为直线![]()
上的两点.![]()
(1)请写出图中面积相等的各对三角形: .
(2)如果,![]()
,![]()
为三个定点,点![]()
在![]()
上移动,那么无论![]()
点移动到任何位置,总有: 与![]()
的面积相等;理由是: .![]()
![]()
解决问题:
如图3,五边形是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图4所示的形状,但承包土地与开垦荒地的分界小路(图4中折线![]()
)还保留着,张大爷想过点![]()
修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多.请你用以上的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)![]()
(1)写出设计方案,并在图4中画出相应的图形;
(2)说明方案设计理由.
查看答案和解析>>
科目: 来源:广东省毕业生学业考试数学模拟试卷 题型:单选题
一组数据5,7,8,10,12,12,44的众数和中位数分别是( )
A. 44和10 B. 12和10 C. 10和12 D. 12和11
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com