相关习题
 0  327506  327514  327520  327524  327530  327532  327536  327542  327544  327550  327556  327560  327562  327566  327572  327574  327580  327584  327586  327590  327592  327596  327598  327600  327601  327602  327604  327605  327606  327608  327610  327614  327616  327620  327622  327626  327632  327634  327640  327644  327646  327650  327656  327662  327664  327670  327674  327676  327682  327686  327692  327700  366461 

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:填空题

如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:填空题

如图,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC、CD的中点,连接AE、EF,则△AEF的周长为_____.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:填空题

如图,∠APB=30°,圆心在PB上的⊙O的半径为1cm,OP=3cm,若⊙O沿BP方向平移,当⊙O与PA相切时,圆心O平移的距离为_____cm.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

已知分式及一组数据:﹣2,﹣1,1,2,0.

(1)从已知数据中随机选取一个数代替x,能使已知分式有意义的概率是多少?

(2)先将已知分式化简,再从已知数据中选取一个你喜欢的,且使已知分式有意义的数代替x求值.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:

(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;

(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参数同学的成绩,整理并制作如下统计图:

请根据以上图表提供的信息,解答下列问题:

(1)本次调查的样本容量为   

(2)补全频数分布直方图;

(3)在扇形统计图中,m=   ,分数段60≤x<70的圆心角=   °;

(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在   分数段内;

(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是   

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.

探究:设A、P两点间的距离为x.

(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;

(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;

(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目: 来源:北京市西城区2018届九年级中考数学全真模拟试卷(四) 题型:解答题

已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<

【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.

试题解析:(1)∵抛物线有一个公共点M(1,0),

∴a+a+b=0,即b=?2a,

∴抛物线顶点D的坐标为

(2)∵直线y=2x+m经过点M(1,0),

∴0=2×1+m,解得m=?2,

∴y=2x?2,

∴(x?1)(ax+2a?2)=0,

解得x=1或

∴N点坐标为

∵a<b,即a<?2a,

∴a<0,

如图1,设抛物线对称轴交直线于点E,

∵抛物线对称轴为

设△DMN的面积为S,

(3)当a=?1时,

抛物线的解析式为:

解得:

∴G(?1,2),

∵点G、H关于原点对称,

∴H(1,?2),

设直线GH平移后的解析式为:y=?2x+t,

?x2?x+2=?2x+t,

x2?x?2+t=0,

△=1?4(t?2)=0,

当点H平移后落在抛物线上时,坐标为(1,0),

把(1,0)代入y=?2x+t,

t=2,

∴当线段GH与抛物线有两个不同的公共点,t的取值范围是

【题型】解答题
【结束】
25

如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.

(1)求二次函数的解析式;

(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;

(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案