相关习题
 0  328644  328652  328658  328662  328668  328670  328674  328680  328682  328688  328694  328698  328700  328704  328710  328712  328718  328722  328724  328728  328730  328734  328736  328738  328739  328740  328742  328743  328744  328746  328748  328752  328754  328758  328760  328764  328770  328772  328778  328782  328784  328788  328794  328800  328802  328808  328812  328814  328820  328824  328830  328838  366461 

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

计算:(1)

(2)解不等式并把解集在数轴上表示出来.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

在△ABC 中,D 是 BC 边的中点,E、F 分别在 AD 及其延长线上,CE∥BF,连接BE、CF.

(1)求证:△BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

青少年视力水平下降已引起全社会的广泛关注,为了解某市初中毕业年级5 000名学生的视力情况,我们从中抽取了一部分学生的视力作为样本进行数据处理,得到如下的不完整的频数分布表和频数分布直方图:

请根据以上图表信息回答下列问题:

(1)在频数分布表中,a=________,b=________;

(2)补全条形统计图;

(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少?

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为37°,大楼底部A的俯角为60°,此时热气球P离地面的高度为120m.试求大楼AB的高度(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及其延长线分别交AC,BC于点G,F.

(1)求证:DF垂直平分AC;

(2)若弦AD=10,AC=16,求⊙O的半径.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.

(1)求反比例函数和一次函数的解析式;

(2)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

(本题满分7分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:

服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。

(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?

(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?

大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.

请你在下列的阅读、应用的过程中,完成解答.

(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,

∵直线l是点B,B′的对称轴,点C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______.

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

归纳小结:

本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).

本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.

(2)模型应用

①如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.

解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______.

②如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______;

③如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.

(1)请直接写出线段AF,AE的数量关系

(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;

(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

查看答案和解析>>

科目: 来源:山东省济宁市2018年中考全真模拟卷数学试卷 题型:解答题

如图,已知抛物线(m>0)与x轴相交于点A,B,与y轴相交于点C,且点A在点B的左侧.

(1)若抛物线过点(2,2),求抛物线的解析式;

(2)在(1)的条件下,抛物线的对称轴上是否存在一点H,使AH+CH的值最小,若存在,求出点H的坐标;若不存在,请说明理由;

(3)在第四象限内,抛物线上是否存在点M,使得以点A,B,M为顶点的三角形与△ACB相似?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案