相关习题
 0  52081  52089  52095  52099  52105  52107  52111  52117  52119  52125  52131  52135  52137  52141  52147  52149  52155  52159  52161  52165  52167  52171  52173  52175  52176  52177  52179  52180  52181  52183  52185  52189  52191  52195  52197  52201  52207  52209  52215  52219  52221  52225  52231  52237  52239  52245  52249  52251  52257  52261  52267  52275  366461 

科目: 来源:辽宁省中考真题 题型:解答题

如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方)。

(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

已知关于x的方程mx2-(3m-1)x+2m-2=0。
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围。

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知抛物线顶点为(-1,5),且与y轴交点的纵坐标为-3,则此抛物线解析式是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=x2+(m+1)x+m,根据下列条件分别求m的值.
(1)若抛物线过原点;
(2)若抛物线的顶点在x轴上;
(3)若抛物线的对称轴为x=2.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某商场进货价为40元的台灯以50元售出,平均每月能售出500个.调查表明:这种台灯的售价每上涨一元,其销售量就将减少10个.针对这种台灯的销售情况,请解答以下问题:
(1)设销售单价定为55元/个,求月销售量和月销售利润;
(2)设销售单价定为x元/个,月销售利润为y元,求x与y的函数关系式.(不必写出自变量的范围)

查看答案和解析>>

科目: 来源:不详 题型:填空题

竖直向上抛物体高度h和时间t符合关系式h=v0t-
1
2
gt2,其中重力加速度以10米/秒2计算.爆竹点燃后以初速度v0=20米/秒上升,则经过______秒爆竹离地20米.

查看答案和解析>>

科目: 来源:不详 题型:解答题

根据下列条件,求二次函数的解析式:
(1)图象的顶点为(2,3),且过点(3,1);
(2)图象经过点(1,-2),(0,-1),(-2,-11).

查看答案和解析>>

科目: 来源:不详 题型:填空题

学校召开的运动会上,运动员李明掷铅球,铅球的高y(m)与水平的距离x(m)之间的函数关系式为y=-
1
12
x2+
2
3
x+
5
3
,则李明的成绩为______m.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售商订购,制定了促销条件:当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元.
(1)若销售商一次订购x(x>100)个零件,直接写出零件的实际出厂单价y(元)?
(2)设销售商一次订购x(x>100)个零件时,工厂获得的利润为W元(W>0).
①求出W(元)与x(个)之间的函数关系式及自变量x的取值范围;并算出销售商一次订购多少个零件时,厂家可获得利润6000元;
②厂家为了达到既鼓励销售商订购又保证自己能获取最大利润的目的,重新制定新促销条件:在原有的基础上又增加了限制条件--销售商订购的全部零件的实际出厂单价不能低于a(元).请你利用函数及其图象的性质求出a的值;并写出实行新促销条件时W(元)与x(个)之间的函数关系式及自变量x的取值范围.(工厂出售一个零件利润=实际出厂单价-每个零件的成本)

查看答案和解析>>

科目: 来源:不详 题型:解答题

某种商品以8元购进,若按每件10元售出,每天可销售200件,现采用提高售价,减少进货量的办法来增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.
(1)当售价提高多少元时,每天利润为700元?
(2)设售价为x元,利润为y元,请你探究售价为多少元时,利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案