相关习题
 0  52192  52200  52206  52210  52216  52218  52222  52228  52230  52236  52242  52246  52248  52252  52258  52260  52266  52270  52272  52276  52278  52282  52284  52286  52287  52288  52290  52291  52292  52294  52296  52300  52302  52306  52308  52312  52318  52320  52326  52330  52332  52336  52342  52348  52350  52356  52360  52362  52368  52372  52378  52386  366461 

科目: 来源:山东省期末题 题型:解答题

如图,抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点c(0,3)。
(1)求此抛物线所对应函数的表达式;
(2)若抛物线的顶点为D,在其对称轴右侧的抛物线上是否存在点P,使得△PCD为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

已知△ABC中,边BC的长与BC边上的高的和为20.
(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;
(2)当BC多长时,△ABC的面积最大?最大面积是多少?
(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

如图,抛物线y= x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)
(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

查看答案和解析>>

科目: 来源:上海市期末题 题型:计算题

已知二次函数y=x2+mx+n的图像经过点(2,-1)和(1,0),求这个二次函数的解析式,并求出它的图像的顶点坐标和对称轴.

查看答案和解析>>

科目: 来源:同步题 题型:填空题

用一块长方形的铁片,把它的四个角各自剪去一个边长是4cm的小方块,然后把四边折起来做成一个没有盖的盒子,已知铁片的长是宽的2倍,则盒子的容积y(cm3)与铁片宽x(cm)的函数关系式为(    ).

查看答案和解析>>

科目: 来源:天津中考真题 题型:解答题

已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上。
(Ⅰ)若,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由。

查看答案和解析>>

科目: 来源:贵州省中考真题 题型:解答题

已知二次函数
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。

查看答案和解析>>

科目: 来源:山东省中考真题 题型:单选题

某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为
[     ]
A.50m
B.100m
C.160m
D.200m

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止,设动点运动的时间为t秒。
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

查看答案和解析>>

同步练习册答案