相关习题
 0  52204  52212  52218  52222  52228  52230  52234  52240  52242  52248  52254  52258  52260  52264  52270  52272  52278  52282  52284  52288  52290  52294  52296  52298  52299  52300  52302  52303  52304  52306  52308  52312  52314  52318  52320  52324  52330  52332  52338  52342  52344  52348  52354  52360  52362  52368  52372  52374  52380  52384  52390  52398  366461 

科目: 来源:安徽省期中题 题型:解答题

已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2﹣2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

查看答案和解析>>

科目: 来源:期末题 题型:填空题

.将抛物线先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是(    )。

查看答案和解析>>

科目: 来源:黑龙江省期末题 题型:解答题

某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m,不大于60m.预计活动区每平方米造价60元,绿化区每平方米造价50元.
(1)设一块绿化区的长边为xm,写出工程总造价y与x的函数关系式(写出x的取值范围).
(2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x为整数的所有工程方案;若不能,请说明理由.(参考值:≈1.732)

查看答案和解析>>

科目: 来源:湖北省期末题 题型:解答题

在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3)。
(1)求直线AC及抛物线的解析式;
(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;
(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:期中题 题型:解答题

如图,在直角坐标系中,O为原点,抛物线y=x2+bx+3与x轴的负半轴交于点A,与y轴的正半轴交于点B,顶点为P.
(1 )求抛物线的解析式;
(2 )若抛物线向上或向下平移个单位长度后经过点C(-5,6),试求k值及平移后抛物线的最小值;
(3 )设平移后的抛物线与y轴相交于D,顶点为Q,点M是平移的抛物线上的一个动点.请探究:当点M在何位置时,△MBD的面积是△MPQ面积的2 倍?求出此时点的坐标.

查看答案和解析>>

科目: 来源:广东省中考真题 题型:解答题

如图,抛物线y=x2x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC。
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D,设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)。

查看答案和解析>>

科目: 来源:广东省中考真题 题型:解答题

已知二次函数y=mx2+nx+p 图象的顶点横坐标是2 ,与x 轴交于A (x1 ,0 )、B (x2,0 ),x1<0<x2,与y 轴交于点C,O为坐标原点,tan ∠CAO-tan ∠CBO=1。
(1)求证:n+4m=0 ;
(2)求m 、n的值;
(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值。

查看答案和解析>>

科目: 来源:贵州省中考真题 题型:解答题

如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动。
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:海南省中考真题 题型:解答题

如图,顶点为P (4 ,-4 )的二次函数图象经过原点(0 ,0 ),点A 在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON。
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。
(1)求抛物线的解析式及顶点D的坐标;
(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值。

查看答案和解析>>

同步练习册答案