相关习题
 0  52214  52222  52228  52232  52238  52240  52244  52250  52252  52258  52264  52268  52270  52274  52280  52282  52288  52292  52294  52298  52300  52304  52306  52308  52309  52310  52312  52313  52314  52316  52318  52322  52324  52328  52330  52334  52340  52342  52348  52352  52354  52358  52364  52370  52372  52378  52382  52384  52390  52394  52400  52408  366461 

科目: 来源:同步题 题型:解答题

某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图)。
(1)求y与x的关系式;
(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?

查看答案和解析>>

科目: 来源:上海期末题 题型:解答题

如图,在平面直角坐标系内,O为坐标原点,点A在x轴负半轴上,点B在x轴正半轴上,且OB > OA . 设点C (0 ,-4 ), ,线段OA、OB的长是关于x的一元二次方程的两个根.
(1)求过A、B、C三点的抛物线的解析式; 
(2) 设上述抛物线的顶点为P,求直线PB的解析式.

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D。点P,Q分别从B,C两点同时出发,其中点P从点B开始沿BC边向点C运动,速度为1cm/s,点Q从点C开始沿CA边向点A运动,速度为2cm/s,设它们运动的时间为x(s)。
(1)当x为何值时,将△PCQ沿直线PQ翻折180°,使C点落到C′点,得到的四边形CQC′P是菱形;
(2)设△PQD的面积为y(cm2),当0<x<2.5时,求y与x的函数关系式;
(3)当0<x<2.5时,是否存在x,使得△PDM与△MDQ的面积比为5∶3,若存在,求出x的值;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:北京期末题 题型:解答题

如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶?

查看答案和解析>>

科目: 来源:海南省月考题 题型:解答题

如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.。
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:宁夏自治区月考题 题型:解答题

阅读材料:如下图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”。我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半。
解答下列问题:如下图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B。
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:新疆自治区期中题 题型:解答题

如图中是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?

查看答案和解析>>

科目: 来源:新疆自治区期中题 题型:解答题

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格进行涨价销售,每涨价一元,每星期要少卖出10件.该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

已知抛物线:
(1)求抛物线的顶点坐标.
(2)将抛物线向右平移2个单位,再向上平移1个单位,得到抛物线,求抛物线的解析式.
(3)如下图,抛物线的顶点为P轴上有一动点M,在这两条抛物线上是否存在点N,使O(原点)、PMN四点构成以OP为一边的平行四边形,若存在,求出N点的坐标;若不存在,请说明理由
[提示:抛物线≠0)的对称轴是顶点坐标是]

查看答案和解析>>

科目: 来源:广西自治区中考真题 题型:解答题

已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.

查看答案和解析>>

同步练习册答案