相关习题
 0  52221  52229  52235  52239  52245  52247  52251  52257  52259  52265  52271  52275  52277  52281  52287  52289  52295  52299  52301  52305  52307  52311  52313  52315  52316  52317  52319  52320  52321  52323  52325  52329  52331  52335  52337  52341  52347  52349  52355  52359  52361  52365  52371  52377  52379  52385  52389  52391  52397  52401  52407  52415  366461 

科目: 来源:四川省月考题 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)与x轴的两交点的横坐标分别是﹣1和3,与y轴交点的纵坐标是﹣
(1)确定抛物线的解析式;
(2)说出抛物线的开口方向,对称轴和顶点坐标.

查看答案和解析>>

科目: 来源:四川省月考题 题型:解答题

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,平均每天少销售3箱.设销售价为x(元/箱)。
(1)平均每天销售量是多少箱?(用含x的代数式表示)
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源:四川省月考题 题型:填空题

把一个物体以20m/s的速度竖直上抛,该物体在空中的高度h(m)与时间t(s)满足关系h=20t﹣5t2,当h=20m时,物体的运动时间为(    )s.

查看答案和解析>>

科目: 来源:四川省月考题 题型:解答题

已知:如图,二次函数y=ax2﹣2ax+c(a≠0)的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:四川省月考题 题型:解答题

恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为 A、B,与y轴交点为C.连结BP并延长交y轴于点D。
(1)写出点P的坐标;
(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;
(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形。设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S。选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值。

查看答案和解析>>

科目: 来源:广东省期末题 题型:解答题

某电器城购进一批单价为8元的节能灯管,如果按每支10元出售,那么每天可销售100支,经调查发现,这种节能灯管的售价每提高1元,其销售量相应减少5支,为了每天获得最大利润,该电器城应将这种灯管的售价定为每支多少元?每天获得的最大利润是多少?

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

已知:抛物线经过坐标原点。
(1)求抛物线的解析式和顶点B的坐标;
(2)设点A是抛物线与x轴的另一个交点,试在y轴上确定一点P,使PA+PB最短,并求出点P的坐标;
(3)过点A作AC∥BP交y轴于点C,求到直线AP、AC、CP距离相等的点的坐标。

查看答案和解析>>

科目: 来源:湖北省期末题 题型:解答题

如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由. (注意:本题中的结果均保留根号).

查看答案和解析>>

科目: 来源:重庆市期末题 题型:解答题

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点 _________ (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案