相关习题
 0  52238  52246  52252  52256  52262  52264  52268  52274  52276  52282  52288  52292  52294  52298  52304  52306  52312  52316  52318  52322  52324  52328  52330  52332  52333  52334  52336  52337  52338  52340  52342  52346  52348  52352  52354  52358  52364  52366  52372  52376  52378  52382  52388  52394  52396  52402  52406  52408  52414  52418  52424  52432  366461 

科目: 来源:同步题 题型:解答题

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系). 
(1)根据图象你可获得哪些关于该公司的具体信息;(至少写出三条)  
(2)还能提出其他相关的问题吗?若不能,说明理由;若能,提出问题并解答
 

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

抛物线与x轴交于A(- 2,0)、B(6,0)两点,与y轴交于点 C(0,-4)。
(1)求抛物线的解析式;
(2)如图 1,连接AC、BC,点M(m,0)在线段AB上(不与A、B重合),过点M作MN ∥AC,交BC于点N,连接CM,设△CMN的面积为 S,求S与 m之间的函数关系式;
(3)点D(4,k)在抛物线上,点E为在x轴下方的抛物线上的一个动点,如图2所示,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图所示,已知抛物线y = ax2 + bx + c(a≠0)的顶点为 Q(2,- 1),且与y轴交于点 C(0,3),与x轴交于A、B两点(点A在点B的右侧),连接AC,点P从点C出发沿抛物线向点A运动(点P与点A不重合),过点P作PD∥y轴,交AC于点 D。
(1)求该抛物线的解析式。
(2)连接OP,设点P的坐标为 (x,y),点P从C 向A运动的过程中,由线段CO、OP、PA、AC 围成的四边形的面积为 S,求S关于P点横坐标x的函数解析式,并求出S的最大值。
(3)在点P从C向 A运动的过程中,若∠DAP = 90°,直接写出符合条件的点 P的坐标。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定A(0, )的距离与它到定直线y= -的距离相等,那么动点M形成的图形就是抛物线(p>0),如图。
(1)已知动点M(x,y)到定点A(0,4)的距离与到定直线y= -4的距离相等,请写出动点M形成的抛物线的解析式。
(2)若(1)中求得的抛物线与一次函数相交于B、C两点,求△OBC的面积。
(3)若点D的坐标是(1,8),在(1)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,已知正方形OABC的边长为 2,点D为 CO的中点,抛物线经过点A,且顶点为 D,点P为抛物线上的动点,且横坐标为 m。
(1)求该抛物线的解析式。
(2)过点P作直线EP平行于y轴,交BC所在直线于点E,连接OP,某数学小组在探究时发现:动点P到BC所在直线的距离PE始终等于OP,你认为正确吗?请说明理由。
(3)在(2)中,连接OE,当△OPE为锐角三角形、直角三角形、钝角三角形、等边三角形时,分别求 m的取值范围。

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知直线y=x和y=-x+m,二次函数y=x2+px+q图象的顶点为M.
(1)若M恰在直线y=x与y=-x+m的交点处,试证明:无论m取何实数值,二次函数
y=x2+px十q的图象与直线y=-x+m总有两个不同的交点.  
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式,
并作出其大致图象.

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:
(年获利=年销售收入﹣生产成本﹣投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3.
(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H.
(1)求两圆的圆心O1,O2所在直线的解析式;
(2)求两圆的圆心O1,O2之间的距离d;
(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2
试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为
的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案