相关习题
 0  52355  52363  52369  52373  52379  52381  52385  52391  52393  52399  52405  52409  52411  52415  52421  52423  52429  52433  52435  52439  52441  52445  52447  52449  52450  52451  52453  52454  52455  52457  52459  52463  52465  52469  52471  52475  52481  52483  52489  52493  52495  52499  52505  52511  52513  52519  52523  52525  52531  52535  52541  52549  366461 

科目: 来源:湖北省中考真题 题型:解答题

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元),当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x万元,可获利润(万元)。
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:填空题

出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=(    )元,一天出售该种手工艺品的总利润y最大。

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E。
(1)求证:AE·AO=BF·BO;
(2)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式;
(3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时的OF的长:若不存在,请说明理由。

查看答案和解析>>

科目: 来源:新疆自治区中考真题 题型:解答题

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定为多少元?

查看答案和解析>>

科目: 来源:新疆自治区中考真题 题型:解答题

如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度从A点出发,沿AC向C移动,同时,动点Q以1米/秒得速度从C点出发,沿CB向B移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。
(1)①当t=2.5秒时,求△CPQ的面积;
②求△CPQ的面积S(平方米)关于时间t(秒)的函数关系式;
(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;
(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图,抛物线与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上。
(1)求a的值;
(2)求A,B的坐标;
(3)以AC,CB为一组邻边作ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点。
(1)求抛物线的解析式;
(2)求点D的坐标,并在图中画出直线BD;
(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,已知直线交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E。
(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时D落在x轴上时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

已知点H(-1,2)在二次函数y=x2-2x+m的图象C1上。
(1)求m的值;
(2)若抛物线C2:y=ax2+bx+c与抛物线C1关于y轴对称,且Q1(-2,q1)、Q2(-3,q2)在抛物线C2上,则q1q2(用“=”、“>”、“<”、“≥”、“≤”填空)。
(3)设抛物线C2的顶点为M,抛物线C1的顶点为N,请问在抛物线C1或C2上是否存在点P,使以点P、M、N为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△CA′O′。
(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线AA′相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;
(2)继续旋转△CA′O′,当以CA′为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由。

查看答案和解析>>

同步练习册答案