相关习题
 0  52362  52370  52376  52380  52386  52388  52392  52398  52400  52406  52412  52416  52418  52422  52428  52430  52436  52440  52442  52446  52448  52452  52454  52456  52457  52458  52460  52461  52462  52464  52466  52470  52472  52476  52478  52482  52488  52490  52496  52500  52502  52506  52512  52518  52520  52526  52530  52532  52538  52542  52548  52556  366461 

科目: 来源:福建省中考真题 题型:解答题

已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3)。
(1)求抛物线的解析式;
(2)若点P在抛物线上运动(点P异于点A),
①如图1,当△PBC面积与△ABC面积相等时.求点P的坐标;
②如图2.当∠PCB=∠BCA时,求直线CP的解析式。

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系。
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额。

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上),若⊙P过A、B、E三点(圆心在x轴上),抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1。
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;②若FQ=t,S△ACQ=s,直接写出s与t之间的函数关系式。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交于点N,动点P从点B出发沿射线BA以每秒厘米的速度运动,同时,动点Q从点N出发沿射线NC运动,且始终保持MQ⊥MP,设运动时间为t秒(t>0)。
(1)△PBM与△PNM相似吗?以图1为例说明理由;
(2)若∠ABC=60°,AB=4厘米,
①求动点Q的运动速度;
②设△APQ的面积为S(平方厘米),求S与t的函数关系式;
(3)探求三者之间的数量关系,以图1为例说明理由。

查看答案和解析>>

科目: 来源:湖南省中考真题 题型:解答题

如图,已知二次函数y=-x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)-x1x2=10。
(1)求此二次函数的解析式;
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S,请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由。

查看答案和解析>>

科目: 来源:辽宁省中考真题 题型:解答题

如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE岁点Q运动)。
(1)求这条抛物线的函数表达式;
(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;
(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GP和正方形QCDE的边EQ落在同一条直线上。
①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?
②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由。

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-1,2),D(3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线经过点D、M、N。
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由;
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:填空题

如图,已知二次函数y=x2+bx+c的图象经过点(-1,0),(1,-2),那么二次函数的解析式是(    )。

查看答案和解析>>

科目: 来源:浙江省期末题 题型:填空题

如图所示的抛物线是二次函数的图象,那么a的值是(      )。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C。
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG垂直x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由。

查看答案和解析>>

同步练习册答案