相关习题
 0  52395  52403  52409  52413  52419  52421  52425  52431  52433  52439  52445  52449  52451  52455  52461  52463  52469  52473  52475  52479  52481  52485  52487  52489  52490  52491  52493  52494  52495  52497  52499  52503  52505  52509  52511  52515  52521  52523  52529  52533  52535  52539  52545  52551  52553  52559  52563  52565  52571  52575  52581  52589  366461 

科目: 来源:浙江省月考题 题型:解答题

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10厘米,OC=6厘米,现有两动点P,Q分别从O,A同时出发,点P在线段OA上沿OA方向作匀速运动,点Q在线段AB上沿AB方向作匀速运动,已知点P的运动速度为1厘米/秒.点Q的运动速度为厘米/秒,运动时间为t秒,
①求△CPQ的面积S关于t 的函数关系式;
②当△CPQ的面积最小时,求点Q的坐标;
③当△COP和△PAQ相似时,求点Q的坐标.

查看答案和解析>>

科目: 来源:福建省月考题 题型:解答题

如图,直线AB过点A(m,0)、B(0,n)(其中m>0,n>0)。反比例函数(p>0)的图象与直线AB交于C、D两点,连结 OC、OD.
(1)已知m+n=10,△AOB的面积为S,问:当n何值时,S取最大值?并求这个最大值;
(2)若m=8,n=6,当△AOC、△COD、△DOB的面积都相等时,求p的值。

查看答案和解析>>

科目: 来源:福建省月考题 题型:解答题

一次函数y=x-3的图象与x轴,y轴分别交于点A,B.一个二次函数y=x2+bx+c的图象经过点A,B.
(1)求点A,B的坐标,并画出一次函数y=x-3的图象;
(2)求二次函数的解析式及它的最小值.

查看答案和解析>>

科目: 来源:安徽省中考真题 题型:解答题

如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:四边形AEFD是平行四边形;
(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式。

查看答案和解析>>

科目: 来源:安徽省中考真题 题型:解答题

如图,已知 A(-4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.
(1)求C点坐标及直线BC的解析式
(2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象
(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P

查看答案和解析>>

科目: 来源:浙江省月考题 题型:解答题

如图,已知抛物线与x轴交于点,与y轴交于点
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线交x轴于点E.在线段的垂直平分线上是否存在点P,使得点P到直线的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线于点F,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目: 来源:吉林省中考真题 题型:解答题

如图,P为抛物线上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB,若AP=1,求矩形的面积PAOB。

查看答案和解析>>

科目: 来源:吉林省中考真题 题型:解答题

如图①,正方形的顶点的坐标分别为,顶点在第一象限.点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点出发,沿x轴正方向以相同速度运动.当P点到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求正方形的边长.
(2)当点P在边上运动时,的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度.
(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积S取最大值时点P的坐标.
(4)若点保持(2)中的速度不变,则点P沿着AB边运动时,的大小随着时间t的增大而增大;沿着边运动时,的大小随着时间t的增大而减小.当点P沿着这两边运动时,使的点P有_____个.
(抛物线的顶点坐标是.)

查看答案和解析>>

科目: 来源:安徽省中考真题 题型:解答题

杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图。
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?
注:抛物线的顶点坐标是

查看答案和解析>>

同步练习册答案