相关习题
 0  52410  52418  52424  52428  52434  52436  52440  52446  52448  52454  52460  52464  52466  52470  52476  52478  52484  52488  52490  52494  52496  52500  52502  52504  52505  52506  52508  52509  52510  52512  52514  52518  52520  52524  52526  52530  52536  52538  52544  52548  52550  52554  52560  52566  52568  52574  52578  52580  52586  52590  52596  52604  366461 

科目: 来源:期末题 题型:解答题

有一种螃蟹,从海上捕获后不放养,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价是每千克20元。
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额Q元,写出Q关于x的函数关系式;(3)该经销商将这批蟹放养多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如左图,正方形ABCD的顶点A、B的坐标分别为(0,10)、(8,4),顶点C、D在第一象限。点P从点A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动。当点P到达点C时,P、Q两点同时停止运动,设运动的时间为t秒。
(1)求正方形ABCD的边长;
(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如右图所示),求P、Q两点的运动速度;
(3)若点P、Q保持⑵中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间t的增大而减小。当点P沿着这两边运动时,使∠OPQ=90°的点P有多少个。

查看答案和解析>>

科目: 来源:期末题 题型:解答题

某杂志的发行量P(单位:万册)与定价Q(单位:元)的函数关系如下表:
(1)请预测P与 Q之间的一个函数关系式;
(2)当定价超过多少元时,便无人订阅?
(3)如何定价,才能或得最大的销售总额?

查看答案和解析>>

科目: 来源:期末题 题型:解答题

如图,在矩形ABCD中,BD=20,AD>AB,设∠ADB=α,已知sinα是方程的一个实根,点E,F分别是BC,DC上的点,EC+CF=8,设BE = x,ΔAEF的面积等于y.
(1)求出y与x之间的函数关系式;
(2)当E,F两点在什么位置时,y有最小值?并求出这个最小值.

查看答案和解析>>

科目: 来源:北京期末题 题型:解答题

在平面直角坐标系中,以点A(-3,0)为圆心、5为半径的圆与轴相交于点B、C(点B在点C的左边),与轴相交于点D、M(点D在点M的下方)。
(1)求以直线为对称轴,且经过点D、C的抛物线的解析式; 
(2)若点P是这条抛物线对称轴上的一个动点,求PC+PD的取值范围; 
(3)若点E为这条抛物线对称轴上的点,则在抛物线上是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形。若存在,求出点F的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

利用配方法证明代数式-10x2+7x-4的值恒小于0。由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l、2、3。

查看答案和解析>>

科目: 来源:重庆市期中题 题型:解答题

某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为万元. 为了响应我国西部大开发的宏伟决策,镇政府在制定经济发展的10年规划时,拟定开发花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路;后5年公路修通时,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每年固定投资x万元可获利润万元.
(1)若不进行开发,求10年所获利润的最大值是多少?
(2)若按此规划进行开发,求10年所获利润的最大值是多少?
(3)若按此规划进行开发后,后5年所获利润共为2400万元,那么当本地销售投资金额大于外地销售投资金额时,每年用于本地销售投资的金额约为多少万元?( ,计算结果保留1位小数)

查看答案和解析>>

科目: 来源:福建省期中题 题型:解答题

如图:在平面直角坐标系xOy中,矩形OABC的边OA在x轴上,顶点B(4,2)在抛物线上,且抛物线交x轴于另一点D(6,0),抛物线的对称轴交BC边于E,直线AE分别交y轴于F、交OB于P。
(1)求抛物线对应的二次函数解析式;
(2)若以点O为圆心,OP为半径作⊙O,试判断AE与⊙O的位置关系,并说明理由;
(3)若动直线MN⊥x轴于N交抛物线于M,且在y轴的右侧运动,是否存在点M使得△AMN与△ABP相似?若存在请求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.
方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;
方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,在平面直角坐标系xOy中,抛物线与x轴交于A(1,0)、 B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α().
①当α等于多少度时,△CPQ是等腰三角形?
②设,求s与t之间的函数关系式.

查看答案和解析>>

同步练习册答案