精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(cosα,sinα)(α∈R)
(I)若α=-$\frac{π}{6}$,试用基底$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{c}$=(2$\sqrt{3}$,0);
(II)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α值.

分析 (1)采用待定系数法,根据向量相等,建立方程组求解.
(2)根据垂直关系,转化为数量积为0,得三角函数的关系式,求得向量$\overrightarrow{a}$.

解答 (本小题满分12分)
解:(I)当$α=-\frac{π}{6}$时,$\overrightarrow{b}$=$(\frac{\sqrt{3}}{2},-\frac{1}{2})$…(1分)
设$\overrightarrow{c}=λ\overrightarrow{a}+μ\overrightarrow{b}$,
则$(2\sqrt{3},0)$=$λ(\sqrt{3},1)+μ(\frac{\sqrt{3}}{2},-\frac{1}{2})$=$(\sqrt{3}λ+\frac{\sqrt{3}}{2}μ,λ-\frac{1}{2}μ)$…(3分)
∴$\left\{\begin{array}{l}{2\sqrt{3}=\sqrt{3}λ+\frac{\sqrt{3}}{2}μ}\\{0=λ-\frac{1}{2}μ}\end{array}\right.$∴$\left\{\begin{array}{l}{λ=1}\\{μ=2}\end{array}\right.$…(5分)
∴$\overrightarrow{c}=\overrightarrow{a}+2\overrightarrow{b}$…(6分)
(II)由$\overrightarrow{a}⊥\overrightarrow{b}$,得$\overrightarrow{a}•\overrightarrow{b}=\sqrt{3}cosα+sinα=0$…(8分)
∴$sinα=-\sqrt{3}cosα$
∴$tanα=-\frac{\sqrt{3}}{3}$…(10分)
∴$α=kπ-\frac{π}{6}$(k∈Z).…(12分)

点评 考查平面向量的平面向量基本定理,坐标运算,三角函数求值.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.要得到函数y=3cos2x的图象,只需将函数$y=3cos({2x+\frac{π}{3}})$的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b,则b为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.全集U=R,集合A={x|-1≤x≤1且x≠0},B={x|x<-1或x>4},则A∩(∁UB)=(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-1≤x≤1且x≠0}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,则关于x的函数y=f(x)-a,(-1<a<0)的所有零点之和为(  )
A.2a-1B.2-a-1C.1-2-aD.1-2a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足$\frac{1-z}{1+z}=-i$,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{3}{5}$,过左焦点F且垂直于长轴的弦长为$\frac{32}{5}$.
(1)求椭圆C的标准方程;
(2)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{4}{5}$的直线l交椭圆C于A、B两点,证明:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设bn=log2$\frac{{a}_{n+1}}{6}$,则bn等于(  )
A.2n-3B.2n-4C.n-3D.n-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果$a+\frac{1}{a}=2$,那么${a^2}+\frac{1}{a^2}$的值是(  )
A.2B.4C.0D.-4

查看答案和解析>>

同步练习册答案