精英家教网 > 高中数学 > 题目详情

有甲、乙两城,甲城位于一直线形的河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城之水管费分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?

答案:
解析:

  解:如图所示,设水厂距乙城到岸的垂足的距离为x千米,依据题意得CD=,设总费用为y,

  则y=500(50-x)+700=25 000-500x+700

  =-500+700×(x2+1 600×2x=-500+

  令=0,解得x=

  水厂与甲城距离为50-千米时,总费用最省.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足DA相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足DA相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足DA相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元与5a元,问供水站C建在岸边何处才能使水管费用最省?

查看答案和解析>>

同步练习册答案