分析 根据诱导公式和奇偶性可知φ=$\frac{π}{2}$,根据对称中心可求出ω,从而得出f(x)的解析式.
解答 解:∵f(x)是偶函数,0≤φ≤π,
∴φ=$\frac{π}{2}$,
∵f(x)的图象关于M($\frac{2π}{3}$,0)对称,
∴sin($\frac{2π}{3}ω$+$\frac{π}{2}$)=0,
∴$\frac{2π}{3}ω$+$\frac{π}{2}$=kπ,即ω=$\frac{3k}{2}$-$\frac{3}{4}$,k∈Z.
∵1<ω<3,
∴ω=$\frac{9}{4}$.
∴f(x)=sin($\frac{9}{4}x$+$\frac{π}{2}$)=cos$\frac{9x}{4}$.
点评 本题考查了正弦函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a<f'(1)<f'(2) | B. | f'(1)<a<f'(2) | C. | f'(2)<f'(1)<a | D. | f'(1)<f'(2)<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | P在曲线C上,Q不在曲线C上 | B. | P、Q都不在曲线C上 | ||
| C. | P不在曲线C上,Q在曲线C上 | D. | P、Q都在曲线C上 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com