精英家教网 > 高中数学 > 题目详情
15.如图,为了探求曲线y=x2,x=2与x轴围成的曲边三角形OAP的面积,用随机模拟的方法向矩形OAPB内随机投点1080次,现统计落在曲边三角形OAP的次数360次,则可估算曲边三角形OAP面积为$\frac{8}{3}$.

分析 根据几何概型概率公式列方程得出曲边三角形的面积.

解答 解:P(2,4).
由几何概型的概率公式可知$\frac{{S}_{曲边三角形OAP}}{{S}_{正方形OAPB}}$=$\frac{360}{1080}$=$\frac{1}{3}$,
∴曲边三角形OAP面积约为$\frac{1}{3}$S正方形OAPB=$\frac{1}{3}×2×4$=$\frac{8}{3}$.
故答案为:$\frac{8}{3}$.

点评 本题考查了几何概型的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=2x+a,g(x)=lnx-2x,如果对任意的${x_1},{x_2}∈[{\frac{1}{2},2}]$,都有f(x1)≤g(x2)成立,则实数a的取值范围是(-∞,ln2-8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(ωx+φ)(1<ω<3,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{2π}{3}$,0)对称,求函数f(x)=sin(ωx+φ)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在极坐标系中,曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+a(a为常数).
(1)求函数f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值是20,求f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为(  )
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,已知AB=2,AC=3,∠A=120°,则△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量X服从正态分布N(100,4),若P(102<X<m)=0.1359,则m等于[驸:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544](  )
A.103B.104C.105D.106

查看答案和解析>>

同步练习册答案