精英家教网 > 高中数学 > 题目详情
1.如图所示的散点图,现选用两种回归模型,模型A:使用线性回归,计算相关指数$R_1^2$;模型B:用指数回归,计算出相关指数$R_2^2$,则一定有(  )
A.$R_1^2>R_2^2$B.$R_1^2<R_2^2$C.$R_1^2=R_2^2$D.无法确定

分析 根据回归模型的相关指数的意义进行判断即可.

解答 解:根据散点图知,利用指数回归模型模拟效果要好于线性回归模型,
所以线性回归模型的相关指数$R_1^2$小于指数回归模型的相关指数$R_2^2$.
即R12<R22
故选:B.

点评 本题考查了回归模型的相关指数的意义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知圆x2+y2=4与双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}$=1(b>0)的两条渐近线相交于A,B,C,D四点,若四边形ABCD的面积为2b,则b=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列判断错误的是(  )
A.“|am|<|bm|”是“|a|<|b|”的充分不必要条件
B.命题“?x∈R,ax+b≤0”的否定是“?x0∈R,ax0+b>0”
C.若¬(p∧q)为真命题,则p,q均为假命题
D.命题“若p,则¬q”为真命题,则“若q,则¬p”也为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,λ)$,且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数λ的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(-∞,-4)∪(-4,1]D.(-∞,-4)∪(-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平行于直线l:2x-y=0且与圆x2+y2=5相切的直线的方程是(  )
A.2x-y+=0或2x-y-=0B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0D.2x+y+5=0或2x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式|x|•(1-2x)>0的解集是(  )
A.{x|x<$\frac{1}{2}$}B.{x|x<0或0<x<$\frac{1}{2}$}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,则$\frac{b}{a}$的取值范围是(  )
A.$(-1,-\frac{1}{4})$B.$(-1,-\frac{1}{4}]$C.(-1,+∞)D.$(-∞,-\frac{1}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个空间几何体的三视图,则该几何体体积是(  )
A.$\frac{1}{3}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC中,内角A、B、C所对的边分别为a、b、c,若a2=b2+c2-bc,a=3,则△ABC的面积的最大值为(  )
A.$2\sqrt{3}$B.9C.$\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案